{"title":"Partial gradient regularity for parabolic systems with degenerate diffusion and Hölder continuous coefficients","authors":"Fabian Bäuerlein","doi":"10.1016/j.na.2024.113691","DOIUrl":null,"url":null,"abstract":"<div><div>We consider vector valued weak solutions <span><math><mrow><mi>u</mi><mo>:</mo><msub><mrow><mi>Ω</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span> with <span><math><mrow><mi>N</mi><mo>∈</mo><mi>N</mi></mrow></math></span> of degenerate or singular parabolic systems of type <span><span><span><math><mrow><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>−</mo><mi>div</mi><mspace></mspace><mi>a</mi><mrow><mo>(</mo><mi>z</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>D</mi><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mspace></mspace><mtext>in</mtext><mspace></mspace><msub><mrow><mi>Ω</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>=</mo><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span>where <span><math><mi>Ω</mi></math></span> denotes an open set in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> for <span><math><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>T</mi><mo>></mo><mn>0</mn></mrow></math></span> a finite time. Assuming that the vector field <span><math><mi>a</mi></math></span> is not of Uhlenbeck-type structure, satisfies <span><math><mi>p</mi></math></span>-growth assumptions and <span><math><mrow><mrow><mo>(</mo><mi>z</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow><mo>↦</mo><mi>a</mi><mrow><mo>(</mo><mi>z</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow></mrow></math></span> is Hölder continuous for every <span><math><mrow><mi>ξ</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi><mi>n</mi></mrow></msup></mrow></math></span>, we show that the gradient <span><math><mrow><mi>D</mi><mi>u</mi></mrow></math></span> is partially Hölder continuous, provided the vector field degenerates like that of the <span><math><mi>p</mi></math></span>-Laplacian for small gradients.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"251 ","pages":"Article 113691"},"PeriodicalIF":1.3000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24002104","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider vector valued weak solutions with of degenerate or singular parabolic systems of type where denotes an open set in for and a finite time. Assuming that the vector field is not of Uhlenbeck-type structure, satisfies -growth assumptions and is Hölder continuous for every , we show that the gradient is partially Hölder continuous, provided the vector field degenerates like that of the -Laplacian for small gradients.
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.