Spatial and temporal twin-guided pattern recurrent graph network for implementing reasoning of spatiotemporal knowledge graph

IF 7.4 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xiaobei Xu , Ruizhe Ma , Beijing Zhou , Li Yan , Zongmin Ma
{"title":"Spatial and temporal twin-guided pattern recurrent graph network for implementing reasoning of spatiotemporal knowledge graph","authors":"Xiaobei Xu ,&nbsp;Ruizhe Ma ,&nbsp;Beijing Zhou ,&nbsp;Li Yan ,&nbsp;Zongmin Ma","doi":"10.1016/j.ipm.2024.103942","DOIUrl":null,"url":null,"abstract":"<div><div>The extrapolation of knowledge graphs (KGs) has been the subject of numerous studies. However, real world data often has complex spatial attributes, which makes reasoning on spatiotemporal knowledge graphs (STKGs) challenging. In response, we propose a model that captures both temporal and spatial patterns to address the challenge of predicting future facts in STKGs. The proposed spatial and temporal twin-guided pattern recurrent graph network (STTP-RGN) utilizes temporal and spatial sequences to identify cyclic and repetitive patterns in data. It performs spatiotemporal-twin encoding and temporal and spatial sequence encoding respectively, and inputs the encoded three results into three corresponding decoders to determine the evolution of entity and predicate representations in time and space. We used the YAGO10K, Wikidata40K, Opensky18K and DY-NB21K for tests on entity and predicate prediction. On YAGO10K, the model's entity prediction performance outperforms the best temporal extrapolation model RETIA by 20 %. The predicate and entity predictions on Wikidata40K have improved by 3 % and 20 %, respectively. Results for entity prediction on Opensky18K have increased by 30 %, while results for predicate prediction have improved by 1 %. The experimental results demonstrate that the model fills the gap in knowledge extrapolation on STKG.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"62 1","pages":"Article 103942"},"PeriodicalIF":7.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457324003017","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The extrapolation of knowledge graphs (KGs) has been the subject of numerous studies. However, real world data often has complex spatial attributes, which makes reasoning on spatiotemporal knowledge graphs (STKGs) challenging. In response, we propose a model that captures both temporal and spatial patterns to address the challenge of predicting future facts in STKGs. The proposed spatial and temporal twin-guided pattern recurrent graph network (STTP-RGN) utilizes temporal and spatial sequences to identify cyclic and repetitive patterns in data. It performs spatiotemporal-twin encoding and temporal and spatial sequence encoding respectively, and inputs the encoded three results into three corresponding decoders to determine the evolution of entity and predicate representations in time and space. We used the YAGO10K, Wikidata40K, Opensky18K and DY-NB21K for tests on entity and predicate prediction. On YAGO10K, the model's entity prediction performance outperforms the best temporal extrapolation model RETIA by 20 %. The predicate and entity predictions on Wikidata40K have improved by 3 % and 20 %, respectively. Results for entity prediction on Opensky18K have increased by 30 %, while results for predicate prediction have improved by 1 %. The experimental results demonstrate that the model fills the gap in knowledge extrapolation on STKG.
用于实现时空知识图谱推理的时空孪生引导模式循环图网络
知识图谱(KG)的外推一直是众多研究的主题。然而,现实世界的数据往往具有复杂的空间属性,这使得时空知识图谱(STKGs)推理具有挑战性。为此,我们提出了一种同时捕捉时间和空间模式的模型,以应对在 STKGs 中预测未来事实的挑战。我们提出的时空孪生引导模式循环图网络(STTP-RGN)利用时间和空间序列来识别数据中的循环和重复模式。它分别执行时空孪生编码和时空序列编码,并将编码后的三个结果输入三个相应的解码器,以确定实体和谓词表示在时间和空间上的演变。我们使用 YAGO10K、Wikidata40K、Opensky18K 和 DY-NB21K 对实体和谓词预测进行了测试。在 YAGO10K 上,该模型的实体预测性能比最佳时间外推模型 RETIA 高出 20%。在 Wikidata40K 上,谓词和实体预测分别提高了 3% 和 20%。Opensky18K 上的实体预测结果提高了 30%,而谓词预测结果提高了 1%。实验结果表明,该模型填补了 STKG 知识外推方面的空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信