Improving prediction accuracy of spread through air spaces in clinical-stage T1N0 lung adenocarcinoma using computed tomography imaging models

Shihua Dou MD , Zhuofeng Li BS , Zhenbin Qiu MD , Jing Zhang PhD , Yaxi Chen MD , Shuyuan You MD , Mengmin Wang MD , Hongsheng Xie MD , Xiaoxiang Huang MD , Yun Yi Li , Jingjing Liu MD , Yuxin Wen MD , Jingshan Gong PhD , Fanli Peng MD , Wenzhao Zhong PhD , Xuegong Zhang PhD , Lin Yang PhD
{"title":"Improving prediction accuracy of spread through air spaces in clinical-stage T1N0 lung adenocarcinoma using computed tomography imaging models","authors":"Shihua Dou MD ,&nbsp;Zhuofeng Li BS ,&nbsp;Zhenbin Qiu MD ,&nbsp;Jing Zhang PhD ,&nbsp;Yaxi Chen MD ,&nbsp;Shuyuan You MD ,&nbsp;Mengmin Wang MD ,&nbsp;Hongsheng Xie MD ,&nbsp;Xiaoxiang Huang MD ,&nbsp;Yun Yi Li ,&nbsp;Jingjing Liu MD ,&nbsp;Yuxin Wen MD ,&nbsp;Jingshan Gong PhD ,&nbsp;Fanli Peng MD ,&nbsp;Wenzhao Zhong PhD ,&nbsp;Xuegong Zhang PhD ,&nbsp;Lin Yang PhD","doi":"10.1016/j.xjon.2024.07.018","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>To develop computed tomography (CT)-based models to increase the prediction accuracy of spread through air spaces (STAS) in clinical-stage T1N0 lung adenocarcinoma.</div></div><div><h3>Methods</h3><div>Three cohorts of patients with stage T1N0 lung adenocarcinoma (n = 1258) were analyzed retrospectively. Two models using radiomics and deep neural networks (DNNs) were established to predict the lung adenocarcinoma STAS status. For the radiomic models, features were extracted using PyRadiomics, and 10 features with nonzero coefficients were selected using least absolute shrinkage and selection operator regression to construct the models. For the DNN models, a 2-stage (supervised contrastive learning and fine-tuning) deep-learning model, MultiCL, was constructed using CT images and the STAS status as training data. The area under the curve (AUC) was used to verify the predictive ability of both model types for the STAS status.</div></div><div><h3>Results</h3><div>Among the radiomic models, the linear discriminant analysis model exhibited the best performance, with AUC values of 0.8944 (95% confidence interval [CI], 0.8241-0.9502) and 0.7796 (95% CI, 0.7089-0.8448) for predicting the STAS status on the test and external validation cohorts, respectively. Among the DNN models, MultiCL exhibited the best performance, with AUC values of 0.8434 (95% CI, 0.7580-0.9154) for the test cohort and 0.7686 (95% CI, 0.6991-0.8316) for the external validation cohort.</div></div><div><h3>Conclusions</h3><div>CT-based imaging models (radiomics and DNNs) can accurately identify the STAS status of clinical-stage T1N0 lung adenocarcinoma, potentially guiding surgical decision making and improving patient outcomes.</div></div>","PeriodicalId":74032,"journal":{"name":"JTCVS open","volume":"21 ","pages":"Pages 290-303"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JTCVS open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666273624002225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives

To develop computed tomography (CT)-based models to increase the prediction accuracy of spread through air spaces (STAS) in clinical-stage T1N0 lung adenocarcinoma.

Methods

Three cohorts of patients with stage T1N0 lung adenocarcinoma (n = 1258) were analyzed retrospectively. Two models using radiomics and deep neural networks (DNNs) were established to predict the lung adenocarcinoma STAS status. For the radiomic models, features were extracted using PyRadiomics, and 10 features with nonzero coefficients were selected using least absolute shrinkage and selection operator regression to construct the models. For the DNN models, a 2-stage (supervised contrastive learning and fine-tuning) deep-learning model, MultiCL, was constructed using CT images and the STAS status as training data. The area under the curve (AUC) was used to verify the predictive ability of both model types for the STAS status.

Results

Among the radiomic models, the linear discriminant analysis model exhibited the best performance, with AUC values of 0.8944 (95% confidence interval [CI], 0.8241-0.9502) and 0.7796 (95% CI, 0.7089-0.8448) for predicting the STAS status on the test and external validation cohorts, respectively. Among the DNN models, MultiCL exhibited the best performance, with AUC values of 0.8434 (95% CI, 0.7580-0.9154) for the test cohort and 0.7686 (95% CI, 0.6991-0.8316) for the external validation cohort.

Conclusions

CT-based imaging models (radiomics and DNNs) can accurately identify the STAS status of clinical-stage T1N0 lung adenocarcinoma, potentially guiding surgical decision making and improving patient outcomes.
利用计算机断层成像模型提高临床期 T1N0 肺腺癌通过气隙扩散的预测准确性
方法回顾性分析了三组 T1N0 期肺腺癌患者(n = 1258)。利用放射组学和深度神经网络(DNN)建立了两个模型来预测肺腺癌的 STAS 状态。在放射组学模型中,使用 PyRadiomics 提取特征,并使用最小绝对收缩和选择算子回归法选出 10 个系数不为零的特征来构建模型。对于 DNN 模型,使用 CT 图像和 STAS 状态作为训练数据,构建了一个两阶段(监督对比学习和微调)深度学习模型 MultiCL。结果在放射学模型中,线性判别分析模型表现最佳,其预测测试组和外部验证组 STAS 状态的 AUC 值分别为 0.8944(95% 置信区间 [CI],0.8241-0.9502)和 0.7796(95% CI,0.7089-0.8448)。结论 基于CT的成像模型(放射组学和DNN)可以准确识别临床期T1N0肺腺癌的STAS状态,从而为手术决策提供指导并改善患者预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信