Salman Ijaz , Yuhao Shi , Yasir Ali Khan , Maria Khodaverdian , Umair Javaid
{"title":"Robust adaptive control law design for enhanced stability of agriculture UAV used for pesticide spraying","authors":"Salman Ijaz , Yuhao Shi , Yasir Ali Khan , Maria Khodaverdian , Umair Javaid","doi":"10.1016/j.ast.2024.109676","DOIUrl":null,"url":null,"abstract":"<div><div>In precision agriculture, such as crop spraying, controlling UAVs presents various challenges such as variable payload, inertial coefficient variation, influence of external disturbances such as wind gusts, and uncertainties associated with the dynamics. To address these challenges, this paper proposes a hybrid control technique that combines higher-order integral sliding mode control, fast-terminal sliding mode control, and adaptive law. The objective is to mitigate the effects of variable payload, external disturbances, and uncertainties while maintaining the stability and performance of the UAV during spraying. Initially, a mathematical model is constructed for a coaxial octocopter UAV that is fitted with a spraying tank. This model takes into account the variation in mass and moment of inertia. Then, a two-loop control structure is employed to attain control of both the translational and rotational axis of the UAV. The numerical simulations are performed on a nonlinear model of the agricultural UAV system and compared with neural network based sliding mode control and robust adaptive backstepping control schemes. The robustness of the proposed scheme is tested in wind gusts and sensor measurement error conditions. Finally, hardware-in-loop simulations are performed using the Pixhawk Orange Cube flight controller to validate the real-time capability of the proposed scheme.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"155 ","pages":"Article 109676"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824008058","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
In precision agriculture, such as crop spraying, controlling UAVs presents various challenges such as variable payload, inertial coefficient variation, influence of external disturbances such as wind gusts, and uncertainties associated with the dynamics. To address these challenges, this paper proposes a hybrid control technique that combines higher-order integral sliding mode control, fast-terminal sliding mode control, and adaptive law. The objective is to mitigate the effects of variable payload, external disturbances, and uncertainties while maintaining the stability and performance of the UAV during spraying. Initially, a mathematical model is constructed for a coaxial octocopter UAV that is fitted with a spraying tank. This model takes into account the variation in mass and moment of inertia. Then, a two-loop control structure is employed to attain control of both the translational and rotational axis of the UAV. The numerical simulations are performed on a nonlinear model of the agricultural UAV system and compared with neural network based sliding mode control and robust adaptive backstepping control schemes. The robustness of the proposed scheme is tested in wind gusts and sensor measurement error conditions. Finally, hardware-in-loop simulations are performed using the Pixhawk Orange Cube flight controller to validate the real-time capability of the proposed scheme.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.