{"title":"An efficient secure interval test protocol for small integers","authors":"Qiming Hu , Huan Ye , Fagen Li , Chaosheng Feng","doi":"10.1016/j.jisa.2024.103894","DOIUrl":null,"url":null,"abstract":"<div><div>The interval test problem is a variant of Yao’s millionaires’ problem to check whether a value <span><math><mi>x</mi></math></span> belongs to an interval <span><math><mi>R</mi></math></span>. Existing solutions to the interval test problem prioritize generic protocols but encounter efficiency challenges. There is a growing interest in developing efficient and secure multi-party computation protocols tailored to specific applications. In this paper, we propose a secure and simplified protocol for solving the interval test problem. This protocol exhibits high generality, as it only requires invocations of the private set intersection cardinality (PSI-CA) subprotocol. Furthermore, we modify it to construct a more efficient protocol for small integers by introducing oblivious transfer (OT) to reduce the times of homomorphic encryption. Our protocols provide privacy protection for both clients and servers in the semi-honest security model. We evaluate the computational and communication overhead of our protocols. Our OT-based secure interval test (OT-SIT) protocol is seven times faster than existing protocols for 18-bit integers. When the bit length is 4, it reduces communication overhead by approximately 97%. The upstream overhead is as low as 500 B. However, it uses binary tree structures, so the advantages in computation and communication quickly diminish as the bit length increase.</div></div>","PeriodicalId":48638,"journal":{"name":"Journal of Information Security and Applications","volume":"87 ","pages":"Article 103894"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Security and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214212624001960","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The interval test problem is a variant of Yao’s millionaires’ problem to check whether a value belongs to an interval . Existing solutions to the interval test problem prioritize generic protocols but encounter efficiency challenges. There is a growing interest in developing efficient and secure multi-party computation protocols tailored to specific applications. In this paper, we propose a secure and simplified protocol for solving the interval test problem. This protocol exhibits high generality, as it only requires invocations of the private set intersection cardinality (PSI-CA) subprotocol. Furthermore, we modify it to construct a more efficient protocol for small integers by introducing oblivious transfer (OT) to reduce the times of homomorphic encryption. Our protocols provide privacy protection for both clients and servers in the semi-honest security model. We evaluate the computational and communication overhead of our protocols. Our OT-based secure interval test (OT-SIT) protocol is seven times faster than existing protocols for 18-bit integers. When the bit length is 4, it reduces communication overhead by approximately 97%. The upstream overhead is as low as 500 B. However, it uses binary tree structures, so the advantages in computation and communication quickly diminish as the bit length increase.
期刊介绍:
Journal of Information Security and Applications (JISA) focuses on the original research and practice-driven applications with relevance to information security and applications. JISA provides a common linkage between a vibrant scientific and research community and industry professionals by offering a clear view on modern problems and challenges in information security, as well as identifying promising scientific and "best-practice" solutions. JISA issues offer a balance between original research work and innovative industrial approaches by internationally renowned information security experts and researchers.