On the blow-up for a Kuramoto–Velarde type equation

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Oscar Jarrín , Gaston Vergara-Hermosilla
{"title":"On the blow-up for a Kuramoto–Velarde type equation","authors":"Oscar Jarrín ,&nbsp;Gaston Vergara-Hermosilla","doi":"10.1016/j.physd.2024.134407","DOIUrl":null,"url":null,"abstract":"<div><div>It is known that the Kuramoto–Velarde equation is globally well-posed on Sobolev spaces in the case when the parameters <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> involved in the non-linear terms verify <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mfrac><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span> or <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span>. In the complementary case of these parameters, the global existence or blow-up of solutions is a completely open (and hard) problem. Motivated by this fact, in this work we consider a non-local version of the Kuramoto–Velarde equation. This equation allows us to apply a Fourier-based method and, within the framework <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≠</mo><mfrac><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span> and <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≠</mo><mn>0</mn></mrow></math></span>, we show that large values of these parameters yield a blow-up in finite time of solutions in the Sobolev norm. As a complement to it, we address an alternative result on the finite-time blow-up of smooth solutions by considering a <em>virial</em>-type estimate.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924003579","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

It is known that the Kuramoto–Velarde equation is globally well-posed on Sobolev spaces in the case when the parameters γ1 and γ2 involved in the non-linear terms verify γ2=γ12 or γ2=0. In the complementary case of these parameters, the global existence or blow-up of solutions is a completely open (and hard) problem. Motivated by this fact, in this work we consider a non-local version of the Kuramoto–Velarde equation. This equation allows us to apply a Fourier-based method and, within the framework γ2γ12 and γ20, we show that large values of these parameters yield a blow-up in finite time of solutions in the Sobolev norm. As a complement to it, we address an alternative result on the finite-time blow-up of smooth solutions by considering a virial-type estimate.
论 Kuramoto-Velarde 型方程的炸毁问题
众所周知,当非线性项中涉及的参数 γ1 和 γ2 验证 γ2=γ12 或 γ2=0 时,Kuramoto-Velarde方程在Sobolev空间上是全局良好求解的。 在这些参数的互补情况下,解的全局存在性或炸毁是一个完全开放(且困难)的问题。受这一事实的启发,我们在本研究中考虑了 Kuramoto-Velarde 方程的非局部版本。在 γ2≠γ12 和 γ2≠0 的框架内,我们证明了这些参数的大值会导致索波列夫规范中的解在有限时间内炸毁。作为补充,我们通过考虑virial型估计,讨论了光滑解有限时间炸毁的另一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信