{"title":"On the blow-up for a Kuramoto–Velarde type equation","authors":"Oscar Jarrín , Gaston Vergara-Hermosilla","doi":"10.1016/j.physd.2024.134407","DOIUrl":null,"url":null,"abstract":"<div><div>It is known that the Kuramoto–Velarde equation is globally well-posed on Sobolev spaces in the case when the parameters <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> involved in the non-linear terms verify <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mfrac><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span> or <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span>. In the complementary case of these parameters, the global existence or blow-up of solutions is a completely open (and hard) problem. Motivated by this fact, in this work we consider a non-local version of the Kuramoto–Velarde equation. This equation allows us to apply a Fourier-based method and, within the framework <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≠</mo><mfrac><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span> and <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≠</mo><mn>0</mn></mrow></math></span>, we show that large values of these parameters yield a blow-up in finite time of solutions in the Sobolev norm. As a complement to it, we address an alternative result on the finite-time blow-up of smooth solutions by considering a <em>virial</em>-type estimate.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924003579","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
It is known that the Kuramoto–Velarde equation is globally well-posed on Sobolev spaces in the case when the parameters and involved in the non-linear terms verify or . In the complementary case of these parameters, the global existence or blow-up of solutions is a completely open (and hard) problem. Motivated by this fact, in this work we consider a non-local version of the Kuramoto–Velarde equation. This equation allows us to apply a Fourier-based method and, within the framework and , we show that large values of these parameters yield a blow-up in finite time of solutions in the Sobolev norm. As a complement to it, we address an alternative result on the finite-time blow-up of smooth solutions by considering a virial-type estimate.
期刊介绍:
Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.