{"title":"Post-irradiation examination of UN-Mo-W fuels for space nuclear propulsion","authors":"","doi":"10.1016/j.jnucmat.2024.155476","DOIUrl":null,"url":null,"abstract":"<div><div>The National Aeronautics and Space Administration's return to space nuclear propulsion stems from the need for a more efficient method of space travel. Nuclear thermal propulsion systems have been shown to be two times more efficient than chemical propulsion. NASA's Sirius program was created to fabricate and test fuels for space nuclear propulsion, specifically to determine their performance under prototypical startup conditions. The Sirius project featured 4 test capsules, Sirius-1 featured uranium nitride fuel dispersed in a matrix of tungsten and rhenium, while Sirius-2A, -2B, and -3 featured uranium nitride-molybdenum-tungsten fuel (UN-Mo-W). This study discusses the Sirius-2A and -2B irradiation experiments at the Idaho National Laboratory, specifically their performance under irradiation at the Transient Reactor Test Facility. It was found that the fuel samples overall did not exhibit significant cracking, though the Sirius-2A fuel did have one large crack on the surface of the fuel. There was minimal hydrogen absorption in the samples, though it is unknown if the absorption occurred during irradiation or during fabrication. Mechanical testing indicated that the UN fuel demonstrated ceramic behavior as expected, and the Mo/W matrix demonstrated linear elastic behavior to failure.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022311524005774","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The National Aeronautics and Space Administration's return to space nuclear propulsion stems from the need for a more efficient method of space travel. Nuclear thermal propulsion systems have been shown to be two times more efficient than chemical propulsion. NASA's Sirius program was created to fabricate and test fuels for space nuclear propulsion, specifically to determine their performance under prototypical startup conditions. The Sirius project featured 4 test capsules, Sirius-1 featured uranium nitride fuel dispersed in a matrix of tungsten and rhenium, while Sirius-2A, -2B, and -3 featured uranium nitride-molybdenum-tungsten fuel (UN-Mo-W). This study discusses the Sirius-2A and -2B irradiation experiments at the Idaho National Laboratory, specifically their performance under irradiation at the Transient Reactor Test Facility. It was found that the fuel samples overall did not exhibit significant cracking, though the Sirius-2A fuel did have one large crack on the surface of the fuel. There was minimal hydrogen absorption in the samples, though it is unknown if the absorption occurred during irradiation or during fabrication. Mechanical testing indicated that the UN fuel demonstrated ceramic behavior as expected, and the Mo/W matrix demonstrated linear elastic behavior to failure.
期刊介绍:
The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome.
The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example.
Topics covered by JNM
Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior.
Materials aspects of the entire fuel cycle.
Materials aspects of the actinides and their compounds.
Performance of nuclear waste materials; materials aspects of the immobilization of wastes.
Fusion reactor materials, including first walls, blankets, insulators and magnets.
Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties.
Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.