Tahani M. Ahmad MD, ABR , Alessandro Guida PhD , Sam Stewart PhD , Noah Barrett MSc , Michael J. Vincer MD , Jehier K. Afifi MD, MSc
{"title":"Deep Learning Model for Predicting Neurodevelopmental Outcome in Very Preterm Infants Using Cerebral Ultrasound","authors":"Tahani M. Ahmad MD, ABR , Alessandro Guida PhD , Sam Stewart PhD , Noah Barrett MSc , Michael J. Vincer MD , Jehier K. Afifi MD, MSc","doi":"10.1016/j.mcpdig.2024.09.003","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>To develop deep learning (DL) models applied to neonatal cranial ultrasound (CUS) and clinical variables to predict neurodevelopmental impairment (NDI) in very preterm infants (VPIs) at 3 years of corrected age.</div></div><div><h3>Patients and Methods</h3><div>This is a retrospective study of a cohort of VPI (22<sup>0</sup>-30<sup>6</sup> weeks’ gestation) born between 2004 and 2016 in Nova Scotia, Canada. Clinical data at hospital discharge and CUS images at 3 time points were used to develop DL models using elastic net (EN) and convolutional neural network (CNN). The models’ performances were compared using precision recall area under the curve (PR-AUC) and area under the receiver operation characteristic curve (ROC-AUC) with their 95% ci.</div></div><div><h3>Results</h3><div>Of 665 eligible VPIs, 619 (93%) infants with 4184 CUS images were included. The CNN model combining CUS and clinical variables reported better performance (PR-AUC, 0.75; 95% CI, 072-0.79; ROC-AUC, 0.71; 95% CI, 0.67-0.74) in the prediction of positive NDI outcome compared with the traditional models based solely on clinical predictors (PR-AUC, 0.60; 95% CI, 0.52-0.68; ROC-AUC, 0.72; 95% CI, 0.68-0.75). When analyzed by the CUS plane and acquisition time point, the model using the anterior coronal plane at 6 weeks of age provided the highest predictive accuracy (PR-AUC, 0.81; 95% CI, 0.77-0.91; ROC-AUC, 0.78; 95% CI, 0.66-0.87).</div></div><div><h3>Conclusion</h3><div>We developed and internally validated a DL prognostic model using CUS and clinical predictors to predict NDI in VPIs at 3 years of age. Early and accurate identification of infants at risk for NDI enables referral to targeted interventions, which improves functional outcomes.</div></div>","PeriodicalId":74127,"journal":{"name":"Mayo Clinic Proceedings. Digital health","volume":"2 4","pages":"Pages 596-605"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mayo Clinic Proceedings. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949761224001007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
To develop deep learning (DL) models applied to neonatal cranial ultrasound (CUS) and clinical variables to predict neurodevelopmental impairment (NDI) in very preterm infants (VPIs) at 3 years of corrected age.
Patients and Methods
This is a retrospective study of a cohort of VPI (220-306 weeks’ gestation) born between 2004 and 2016 in Nova Scotia, Canada. Clinical data at hospital discharge and CUS images at 3 time points were used to develop DL models using elastic net (EN) and convolutional neural network (CNN). The models’ performances were compared using precision recall area under the curve (PR-AUC) and area under the receiver operation characteristic curve (ROC-AUC) with their 95% ci.
Results
Of 665 eligible VPIs, 619 (93%) infants with 4184 CUS images were included. The CNN model combining CUS and clinical variables reported better performance (PR-AUC, 0.75; 95% CI, 072-0.79; ROC-AUC, 0.71; 95% CI, 0.67-0.74) in the prediction of positive NDI outcome compared with the traditional models based solely on clinical predictors (PR-AUC, 0.60; 95% CI, 0.52-0.68; ROC-AUC, 0.72; 95% CI, 0.68-0.75). When analyzed by the CUS plane and acquisition time point, the model using the anterior coronal plane at 6 weeks of age provided the highest predictive accuracy (PR-AUC, 0.81; 95% CI, 0.77-0.91; ROC-AUC, 0.78; 95% CI, 0.66-0.87).
Conclusion
We developed and internally validated a DL prognostic model using CUS and clinical predictors to predict NDI in VPIs at 3 years of age. Early and accurate identification of infants at risk for NDI enables referral to targeted interventions, which improves functional outcomes.