Comparison of guaranteed lower eigenvalue bounds with three skeletal schemes

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Carsten Carstensen , Benedikt Gräßle , Emilie Pirch
{"title":"Comparison of guaranteed lower eigenvalue bounds with three skeletal schemes","authors":"Carsten Carstensen ,&nbsp;Benedikt Gräßle ,&nbsp;Emilie Pirch","doi":"10.1016/j.cma.2024.117477","DOIUrl":null,"url":null,"abstract":"<div><div>Specially tailored skeletal schemes enable cell and face variables linked with a stabilisation and a fine-tuned parameter can provide guaranteed lower eigenvalue bounds for the Laplacian. This paper briefly presents a unified derivation of skeletal higher-order methods from Carstensen, Zhai, and Zhang (2020), Carstensen, Ern, and Puttkammer (2021), and Carstensen, Gräßle, and Tran (2024). It suggests a paradigm shift from conditional to unconditional lower eigenvalue bounds. Adaptive mesh-refining leads to optimal convergence rates in computational benchmark examples and underlines the superiority of higher-order methods.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"433 ","pages":"Article 117477"},"PeriodicalIF":6.9000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004578252400731X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Specially tailored skeletal schemes enable cell and face variables linked with a stabilisation and a fine-tuned parameter can provide guaranteed lower eigenvalue bounds for the Laplacian. This paper briefly presents a unified derivation of skeletal higher-order methods from Carstensen, Zhai, and Zhang (2020), Carstensen, Ern, and Puttkammer (2021), and Carstensen, Gräßle, and Tran (2024). It suggests a paradigm shift from conditional to unconditional lower eigenvalue bounds. Adaptive mesh-refining leads to optimal convergence rates in computational benchmark examples and underlines the superiority of higher-order methods.
三种骨骼方案的有保证特征下限值比较
特别定制的骨骼方案使细胞和面变量与稳定化和微调参数相联系,可以为拉普拉卡矩提供有保证的特征值下界。本文简要介绍了来自 Carstensen、Zhai 和 Zhang (2020)、Carstensen、Ern 和 Puttkammer (2021) 以及 Carstensen、Gräßle 和 Tran (2024) 的骨骼高阶方法的统一推导。它提出了从有条件特征值下限值到无条件特征值下限值的范式转变。自适应网格细化使计算基准实例达到最佳收敛率,并凸显了高阶方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信