{"title":"Scikit-fingerprints: Easy and efficient computation of molecular fingerprints in Python","authors":"Jakub Adamczyk, Piotr Ludynia","doi":"10.1016/j.softx.2024.101944","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we present <em>scikit-fingerprints</em>, a Python package for computation of molecular fingerprints for applications in chemoinformatics. Our library offers an industry-standard scikit-learn interface, allowing intuitive usage and easy integration with machine learning pipelines. It is also highly optimized, featuring parallel computation that enables efficient processing of large molecular datasets. Currently, <em>scikit-fingerprints</em> stands as the most feature-rich library in the open source Python ecosystem, offering over 30 molecular fingerprints. Our library simplifies chemoinformatics tasks based on molecular fingerprints, including molecular property prediction and virtual screening. It is also flexible, highly efficient, and fully open source.</div></div>","PeriodicalId":21905,"journal":{"name":"SoftwareX","volume":"28 ","pages":"Article 101944"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SoftwareX","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352711024003145","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we present scikit-fingerprints, a Python package for computation of molecular fingerprints for applications in chemoinformatics. Our library offers an industry-standard scikit-learn interface, allowing intuitive usage and easy integration with machine learning pipelines. It is also highly optimized, featuring parallel computation that enables efficient processing of large molecular datasets. Currently, scikit-fingerprints stands as the most feature-rich library in the open source Python ecosystem, offering over 30 molecular fingerprints. Our library simplifies chemoinformatics tasks based on molecular fingerprints, including molecular property prediction and virtual screening. It is also flexible, highly efficient, and fully open source.
期刊介绍:
SoftwareX aims to acknowledge the impact of software on today''s research practice, and on new scientific discoveries in almost all research domains. SoftwareX also aims to stress the importance of the software developers who are, in part, responsible for this impact. To this end, SoftwareX aims to support publication of research software in such a way that: The software is given a stamp of scientific relevance, and provided with a peer-reviewed recognition of scientific impact; The software developers are given the credits they deserve; The software is citable, allowing traditional metrics of scientific excellence to apply; The academic career paths of software developers are supported rather than hindered; The software is publicly available for inspection, validation, and re-use. Above all, SoftwareX aims to inform researchers about software applications, tools and libraries with a (proven) potential to impact the process of scientific discovery in various domains. The journal is multidisciplinary and accepts submissions from within and across subject domains such as those represented within the broad thematic areas below: Mathematical and Physical Sciences; Environmental Sciences; Medical and Biological Sciences; Humanities, Arts and Social Sciences. Originating from these broad thematic areas, the journal also welcomes submissions of software that works in cross cutting thematic areas, such as citizen science, cybersecurity, digital economy, energy, global resource stewardship, health and wellbeing, etcetera. SoftwareX specifically aims to accept submissions representing domain-independent software that may impact more than one research domain.