Power attenuation of Martian rovers and landers solar panels due to dust deposition

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
Thomas Pierron, François Forget, Ehouarn Millour, Antoine Bierjon
{"title":"Power attenuation of Martian rovers and landers solar panels due to dust deposition","authors":"Thomas Pierron,&nbsp;François Forget,&nbsp;Ehouarn Millour,&nbsp;Antoine Bierjon","doi":"10.1016/j.pss.2024.105985","DOIUrl":null,"url":null,"abstract":"<div><div>Because of the high amount of dust in the Martian atmosphere, solar panels of landers and rovers on Mars get covered by dust in the course of their mission. This accumulation significantly decreases the available power over sols. During some missions, winds were able to blow the dust away. These ”dust cleaning events”, as they are called, were followed by an increase of the electrical current produced by the solar arrays. However, the Insight Lander solar panels were never cleaned and the mission died of dust accumulation. In order to better predict the evolution of available power produced by solar panels in the Martian conditions, this paper proposes a model of dust accumulation in which the solar flux under the accumulated dust layer is computed taking into account a full radiative transfer in the atmosphere and in the dust layer accumulated on the panel. This work uses several missions observation data to validate this model.</div></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"253 ","pages":"Article 105985"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planetary and Space Science","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032063324001491","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Because of the high amount of dust in the Martian atmosphere, solar panels of landers and rovers on Mars get covered by dust in the course of their mission. This accumulation significantly decreases the available power over sols. During some missions, winds were able to blow the dust away. These ”dust cleaning events”, as they are called, were followed by an increase of the electrical current produced by the solar arrays. However, the Insight Lander solar panels were never cleaned and the mission died of dust accumulation. In order to better predict the evolution of available power produced by solar panels in the Martian conditions, this paper proposes a model of dust accumulation in which the solar flux under the accumulated dust layer is computed taking into account a full radiative transfer in the atmosphere and in the dust layer accumulated on the panel. This work uses several missions observation data to validate this model.
火星车和着陆器太阳能电池板因灰尘沉积而导致功率衰减
由于火星大气中含有大量灰尘,火星上的着陆器和漫游车的太阳能电池板在执行任务的过程中会被灰尘覆盖。这些灰尘的积累大大降低了太阳能电池板的可用功率。在某些任务中,风能够将灰尘吹走。这些所谓的 "灰尘清理事件 "之后,太阳能电池阵列产生的电流会增加。然而,"洞察号 "着陆器的太阳能电池板从未清洗过,这次任务也因灰尘堆积而失败。为了更好地预测太阳能电池板在火星条件下产生的可用功率的变化,本文提出了一个灰尘积聚模型,在该模型中,计算了积聚灰尘层下的太阳通量,并考虑了大气层和电池板上积聚的灰尘层中的完全辐射传递。这项工作利用几个任务的观测数据来验证这一模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Planetary and Space Science
Planetary and Space Science 地学天文-天文与天体物理
CiteScore
5.40
自引率
4.20%
发文量
126
审稿时长
15 weeks
期刊介绍: Planetary and Space Science publishes original articles as well as short communications (letters). Ground-based and space-borne instrumentation and laboratory simulation of solar system processes are included. The following fields of planetary and solar system research are covered: • Celestial mechanics, including dynamical evolution of the solar system, gravitational captures and resonances, relativistic effects, tracking and dynamics • Cosmochemistry and origin, including all aspects of the formation and initial physical and chemical evolution of the solar system • Terrestrial planets and satellites, including the physics of the interiors, geology and morphology of the surfaces, tectonics, mineralogy and dating • Outer planets and satellites, including formation and evolution, remote sensing at all wavelengths and in situ measurements • Planetary atmospheres, including formation and evolution, circulation and meteorology, boundary layers, remote sensing and laboratory simulation • Planetary magnetospheres and ionospheres, including origin of magnetic fields, magnetospheric plasma and radiation belts, and their interaction with the sun, the solar wind and satellites • Small bodies, dust and rings, including asteroids, comets and zodiacal light and their interaction with the solar radiation and the solar wind • Exobiology, including origin of life, detection of planetary ecosystems and pre-biological phenomena in the solar system and laboratory simulations • Extrasolar systems, including the detection and/or the detectability of exoplanets and planetary systems, their formation and evolution, the physical and chemical properties of the exoplanets • History of planetary and space research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信