Mengting Shao, Kaiyang Chen, Shuting Zhang, Min Tian, Yan Shen, Chen Cao, Ning Gu
{"title":"Multi-omics Mediated Wide Association Studies: Novel Approaches for Understanding Diseases.","authors":"Mengting Shao, Kaiyang Chen, Shuting Zhang, Min Tian, Yan Shen, Chen Cao, Ning Gu","doi":"10.1093/gpbjnl/qzae077","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid development of multi-omics (transcriptome, proteome, cistrome, imaging, and regulome) mediated wide association studies methods have opened new avenues for biologists to understand the susceptibility genes underlying complex diseases. Thorough comparisons of these methods are essential for selecting the most appropriate tool for a given research objective. This review provides a detailed categorization and summary of the statistical models, use cases, and advantages of recent multi-omics mediated wide association studies. In addition, to illustrate gene-disease association studies based on transcriptome-wide association studies (TWAS), we collected 478 disease entries across 22 categories from 235 manually reviewed publications. Our analysis reveals that mental disorders are the most frequently studied by TWAS, indicating its potential to deepen our understanding of the genetic architecture of complex diseases. In summary, this review underscores the importance of multi-omics mediated wide association studies in elucidating complex diseases and highlights the significance of selecting the appropriate method for each study.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, proteomics & bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gpbjnl/qzae077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid development of multi-omics (transcriptome, proteome, cistrome, imaging, and regulome) mediated wide association studies methods have opened new avenues for biologists to understand the susceptibility genes underlying complex diseases. Thorough comparisons of these methods are essential for selecting the most appropriate tool for a given research objective. This review provides a detailed categorization and summary of the statistical models, use cases, and advantages of recent multi-omics mediated wide association studies. In addition, to illustrate gene-disease association studies based on transcriptome-wide association studies (TWAS), we collected 478 disease entries across 22 categories from 235 manually reviewed publications. Our analysis reveals that mental disorders are the most frequently studied by TWAS, indicating its potential to deepen our understanding of the genetic architecture of complex diseases. In summary, this review underscores the importance of multi-omics mediated wide association studies in elucidating complex diseases and highlights the significance of selecting the appropriate method for each study.