Novel [18F]FPG-interleukin-2 conjugate for monitoring immune checkpoint therapy with positron emission tomography.

Pragalath Sadasivam, Siddesh V Hartimath, Shivashankar Khanapur, Boominathan Ramasamy, Peter Cheng, Chin Zan Feng, David Green, Julian L Goggi, Edward G Robins, Ran Yan
{"title":"Novel [<sup>18</sup>F]FPG-interleukin-2 conjugate for monitoring immune checkpoint therapy with positron emission tomography.","authors":"Pragalath Sadasivam, Siddesh V Hartimath, Shivashankar Khanapur, Boominathan Ramasamy, Peter Cheng, Chin Zan Feng, David Green, Julian L Goggi, Edward G Robins, Ran Yan","doi":"10.1016/j.biopha.2024.117617","DOIUrl":null,"url":null,"abstract":"<p><p><sup>18</sup>F-interleukin-2 based PET imaging of activated T cells serves as a potential tool for non-invasive response prediction, treatment evaluation, and patient stratification in cancer immune checkpoint therapy. Herein, we report the radiolabelling of interleukin-2 (IL-2) with a novel arginine selective bioconjugation reagent, 4-[<sup>18</sup>F]fluorophenylglyoxal ([<sup>18</sup>F]FPG). Good non-decay corrected bioconjugation efficiencies of 29 ± 4 % (n = 5) were obtained for the [<sup>18</sup>F]FPG-IL-2. [<sup>18</sup>F]FPG-IL-2 uptake by the phytohemagglutinin-activated Jurkat cells (50.5 ± 1.2 %, n = 3) was significantly higher compared to the non-activated Jurkat cells (12.9 ± 1.1 %, n = 3). The [<sup>18</sup>F]FPG-IL-2 uptake was blocked by the pre-treatment of activated Jurkat cells with excess native IL-2 (22.3 ± 2.2 %, n = 3). Dynamic PET imaging and ex vivo biodistribution study of [<sup>18</sup>F]FPG-IL-2 in healthy and CT26 tumour bearing mice demonstrated hepatobiliary and renal clearance with minimal uptake in other organs and CT26 tumours. [<sup>18</sup>F]FPG-IL-2 PET imaging was applied to non-invasively monitor immune checkpoint therapy in CT26 tumour bearing mice, treated with IgG (control), ⍺PD-1 (monotherapy), and ⍺PD-1+⍺CTLA-4 (combination therapy). Significant uptake was observed in the spleens and tumours of the mice in the combination therapy group, which was associated with increased cytotoxic CD8+ T-cell infiltration and reduced tumour volumes. [<sup>18</sup>F]FPG-IL-2 based PET imaging has the potential to monitor immune checkpoint therapy.</p>","PeriodicalId":93904,"journal":{"name":"Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie","volume":"180 ","pages":"117617"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.biopha.2024.117617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

18F-interleukin-2 based PET imaging of activated T cells serves as a potential tool for non-invasive response prediction, treatment evaluation, and patient stratification in cancer immune checkpoint therapy. Herein, we report the radiolabelling of interleukin-2 (IL-2) with a novel arginine selective bioconjugation reagent, 4-[18F]fluorophenylglyoxal ([18F]FPG). Good non-decay corrected bioconjugation efficiencies of 29 ± 4 % (n = 5) were obtained for the [18F]FPG-IL-2. [18F]FPG-IL-2 uptake by the phytohemagglutinin-activated Jurkat cells (50.5 ± 1.2 %, n = 3) was significantly higher compared to the non-activated Jurkat cells (12.9 ± 1.1 %, n = 3). The [18F]FPG-IL-2 uptake was blocked by the pre-treatment of activated Jurkat cells with excess native IL-2 (22.3 ± 2.2 %, n = 3). Dynamic PET imaging and ex vivo biodistribution study of [18F]FPG-IL-2 in healthy and CT26 tumour bearing mice demonstrated hepatobiliary and renal clearance with minimal uptake in other organs and CT26 tumours. [18F]FPG-IL-2 PET imaging was applied to non-invasively monitor immune checkpoint therapy in CT26 tumour bearing mice, treated with IgG (control), ⍺PD-1 (monotherapy), and ⍺PD-1+⍺CTLA-4 (combination therapy). Significant uptake was observed in the spleens and tumours of the mice in the combination therapy group, which was associated with increased cytotoxic CD8+ T-cell infiltration and reduced tumour volumes. [18F]FPG-IL-2 based PET imaging has the potential to monitor immune checkpoint therapy.

利用正电子发射断层扫描监测免疫检查点疗法的新型[18F]FPG-白介素-2共轭物。
基于 18F 白介素-2 的活化 T 细胞 PET 成像是癌症免疫检查点疗法中进行无创反应预测、治疗评估和患者分层的潜在工具。在此,我们报告了使用新型精氨酸选择性生物结合试剂 4-[18F]fluorophenylglyoxal ([18F]FPG) 对白细胞介素-2(IL-2)进行放射性标记的情况。[18F]FPG-IL-2的非衰变校正生物共轭效率为29 ± 4 %(n = 5)。植物血凝素激活的 Jurkat 细胞对[18F]FPG-IL-2 的吸收率(50.5 ± 1.2 %,n = 3)明显高于未激活的 Jurkat 细胞(12.9 ± 1.1 %,n = 3)。用过量的原生 IL-2 预处理活化的 Jurkat 细胞可阻断 [18F]FPG-IL-2 的摄取(22.3 ± 2.2 %,n = 3)。[18F]FPG-IL-2在健康小鼠和CT26肿瘤小鼠体内的动态PET成像和体内外生物分布研究表明,[18F]FPG-IL-2在肝胆和肾脏清除,而在其他器官和CT26肿瘤中摄取极少。[18F]FPG-IL-2正电子发射计算机断层成像被用于无创监测CT26肿瘤小鼠的免疫检查点疗法,这些小鼠接受了IgG(对照组)、⍺PD-1(单药疗法)和⍺PD-1+⍺CTLA-4(联合疗法)治疗。在联合治疗组小鼠的脾脏和肿瘤中观察到显著的摄取,这与细胞毒性 CD8+ T 细胞浸润增加和肿瘤体积缩小有关。基于[18F]FPG-IL-2的PET成像具有监测免疫检查点疗法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信