Developing a machine learning model with enhanced performance for predicting COVID-19 from patients presenting to the emergency room with acute respiratory symptoms.
Maha Mesfer Alghamdi, Naael H Alazwary, Waleed A Alsowayan, Mohmmed Algamdi, Ahmed F Alohali, Mustafa A Yasawy, Abeer M Alghamdi, Abdullah M Alassaf, Mohammed R Alshehri, Hussein A Aljaziri, Nujoud H Almoqati, Shatha S Alghamdi, Norah A Bin Magbel, Tareq A AlMazeedi, Nashaat K Neyazi, Mona M Alghamdi, Mohammed N Alazwary
{"title":"Developing a machine learning model with enhanced performance for predicting COVID-19 from patients presenting to the emergency room with acute respiratory symptoms.","authors":"Maha Mesfer Alghamdi, Naael H Alazwary, Waleed A Alsowayan, Mohmmed Algamdi, Ahmed F Alohali, Mustafa A Yasawy, Abeer M Alghamdi, Abdullah M Alassaf, Mohammed R Alshehri, Hussein A Aljaziri, Nujoud H Almoqati, Shatha S Alghamdi, Norah A Bin Magbel, Tareq A AlMazeedi, Nashaat K Neyazi, Mona M Alghamdi, Mohammed N Alazwary","doi":"10.1049/syb2.12101","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial Intelligence is playing a crucial role in healthcare by enhancing decision-making and data analysis, particularly during the COVID-19 pandemic. This virus affects individuals across all age groups, but its impact is more severe on the elderly and those with underlying health issues like chronic diseases. This study aimed to develop a machine learning model to improve the prediction of COVID-19 in patients with acute respiratory symptoms. Data from 915 patients in two hospitals in Saudi Arabia were used, categorized into four groups based on chronic lung conditions and COVID-19 status. Four supervised machine learning algorithms-Random Forest, Bagging classifier, Decision Tree, and Logistic Regression-were employed to predict COVID-19. Feature selection identified 12 key variables for prediction, including CXR abnormalities, smoking status, and WBC count. The Random Forest model showed the highest accuracy at 99.07%, followed by Decision Tree, Bagging classifier, and Logistic Regression. The study concluded that machine learning algorithms, particularly Random Forest, can effectively predict and classify COVID-19 cases, supporting the development of computer-assisted diagnostic tools in healthcare.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1049/syb2.12101","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial Intelligence is playing a crucial role in healthcare by enhancing decision-making and data analysis, particularly during the COVID-19 pandemic. This virus affects individuals across all age groups, but its impact is more severe on the elderly and those with underlying health issues like chronic diseases. This study aimed to develop a machine learning model to improve the prediction of COVID-19 in patients with acute respiratory symptoms. Data from 915 patients in two hospitals in Saudi Arabia were used, categorized into four groups based on chronic lung conditions and COVID-19 status. Four supervised machine learning algorithms-Random Forest, Bagging classifier, Decision Tree, and Logistic Regression-were employed to predict COVID-19. Feature selection identified 12 key variables for prediction, including CXR abnormalities, smoking status, and WBC count. The Random Forest model showed the highest accuracy at 99.07%, followed by Decision Tree, Bagging classifier, and Logistic Regression. The study concluded that machine learning algorithms, particularly Random Forest, can effectively predict and classify COVID-19 cases, supporting the development of computer-assisted diagnostic tools in healthcare.
期刊介绍:
IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells.
The scope includes the following topics:
Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.