{"title":"Deformable dose prediction network based on hybrid 2D and 3D convolution for nasopharyngeal carcinoma radiotherapy.","authors":"Yanhua Liu, Wang Luo, Xiangchen Li, Min Liu","doi":"10.1007/s11517-024-03231-8","DOIUrl":null,"url":null,"abstract":"<p><p>Radiotherapy is recognized as the primary treatment for nasopharyngeal carcinoma (NPC). Rapid and accurate dose prediction is crucial for enhancing the quality and efficiency of radiotherapy planning. However, the current dose prediction model based on 2D architecture cannot effectively learn the spatial information among slices. Although some studies have explored the incorporation of interslice features through 3D architecture, the resolution properties of medical image anisotropy significantly limit the predictive performance. To address the issues, we propose a novel deformable dose prediction network based on hybrid 2D and 3D convolution for NPC radiotherapy. Specifically, the proposed model innovatively incorporates a 2.5D architecture based on hybrid 2D and 3D convolution, and effectively utilizes the directional information within anisotropic resolutions to achieve cross-scale feature extraction. Additionally, deformable convolution is introduced into the model to enhance the receptive field and effectively handle multi-scale spatial transformations. To improve channel correlation and reduce redundant features, we design a Residual Deformable Squeeze-and-Excitation Module. We conduct extensive experiments on an internal dataset, and the results show that the proposed model outperforms other existing methods in most dosimetric criteria. The proposed model has superior dose prediction performance in NPC radiotherapy, and has important clinical significance for assisting physicists to optimize the treatment plan and improve standardization of radiotherapy planning. The source code is available at https://github.com/CDUTJ102/2.5D-Deformable-UNet .</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03231-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Radiotherapy is recognized as the primary treatment for nasopharyngeal carcinoma (NPC). Rapid and accurate dose prediction is crucial for enhancing the quality and efficiency of radiotherapy planning. However, the current dose prediction model based on 2D architecture cannot effectively learn the spatial information among slices. Although some studies have explored the incorporation of interslice features through 3D architecture, the resolution properties of medical image anisotropy significantly limit the predictive performance. To address the issues, we propose a novel deformable dose prediction network based on hybrid 2D and 3D convolution for NPC radiotherapy. Specifically, the proposed model innovatively incorporates a 2.5D architecture based on hybrid 2D and 3D convolution, and effectively utilizes the directional information within anisotropic resolutions to achieve cross-scale feature extraction. Additionally, deformable convolution is introduced into the model to enhance the receptive field and effectively handle multi-scale spatial transformations. To improve channel correlation and reduce redundant features, we design a Residual Deformable Squeeze-and-Excitation Module. We conduct extensive experiments on an internal dataset, and the results show that the proposed model outperforms other existing methods in most dosimetric criteria. The proposed model has superior dose prediction performance in NPC radiotherapy, and has important clinical significance for assisting physicists to optimize the treatment plan and improve standardization of radiotherapy planning. The source code is available at https://github.com/CDUTJ102/2.5D-Deformable-UNet .
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).