Walaa K. Mousa, Ashif Y. Shaikh, Rose Ghemrawi, Mohammed Aldulaimi, Aya Al Ali, Nour Sammani, Mostafa Khair, Mohamed I. Helal, Farah Al-Marzooq and Emilia Oueis
{"title":"Human microbiome derived synthetic antimicrobial peptides with activity against Gram-negative, Gram-positive, and antibiotic resistant bacteria†","authors":"Walaa K. Mousa, Ashif Y. Shaikh, Rose Ghemrawi, Mohammed Aldulaimi, Aya Al Ali, Nour Sammani, Mostafa Khair, Mohamed I. Helal, Farah Al-Marzooq and Emilia Oueis","doi":"10.1039/D4MD00383G","DOIUrl":null,"url":null,"abstract":"<p >The prevalence of antibacterial resistance has become one of the major health threats of modern times, requiring the development of novel antibacterials. Antimicrobial peptides are a promising source of antibiotic candidates, mostly requiring further optimization to enhance druggability. In this study, a series of new antimicrobial peptides derived from lactomodulin, a human microbiome natural peptide, was designed, synthesized, and biologically evaluated. Within the most active region of the parent peptide, linear peptide <strong>LM6</strong> with the sequence LSKISGGIGPLVIPV-NH<small><sub>2</sub></small> and its cyclic derivatives <strong>LM13a</strong> and <strong>LM13b</strong> showed strong antibacterial activity against Gram-positive bacteria, including resistant strains, and Gram-negative bacteria. The peptides were found to have a rapid onset of bactericidal activity and transmission electron microscopy clearly shows the disintegration of the cell membrane, suggesting a membrane-targeting mode of action.</p>","PeriodicalId":21462,"journal":{"name":"RSC medicinal chemistry","volume":" 1","pages":" 312-323"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520653/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/md/d4md00383g","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The prevalence of antibacterial resistance has become one of the major health threats of modern times, requiring the development of novel antibacterials. Antimicrobial peptides are a promising source of antibiotic candidates, mostly requiring further optimization to enhance druggability. In this study, a series of new antimicrobial peptides derived from lactomodulin, a human microbiome natural peptide, was designed, synthesized, and biologically evaluated. Within the most active region of the parent peptide, linear peptide LM6 with the sequence LSKISGGIGPLVIPV-NH2 and its cyclic derivatives LM13a and LM13b showed strong antibacterial activity against Gram-positive bacteria, including resistant strains, and Gram-negative bacteria. The peptides were found to have a rapid onset of bactericidal activity and transmission electron microscopy clearly shows the disintegration of the cell membrane, suggesting a membrane-targeting mode of action.