An orphan kinesin in Trypanosoma brucei regulates hook complex assembly and Golgi biogenesis.

IF 5.1 1区 生物学 Q1 MICROBIOLOGY
mBio Pub Date : 2024-10-30 DOI:10.1128/mbio.02634-24
Qing Zhou, Yasuhiro Kurasawa, Huiqing Hu, Thiago Souza Onofre, Ziyin Li
{"title":"An orphan kinesin in <i>Trypanosoma brucei</i> regulates hook complex assembly and Golgi biogenesis.","authors":"Qing Zhou, Yasuhiro Kurasawa, Huiqing Hu, Thiago Souza Onofre, Ziyin Li","doi":"10.1128/mbio.02634-24","DOIUrl":null,"url":null,"abstract":"<p><p>Kinesins are microtubule-based motor proteins that play diverse cellular functions by regulating microtubule dynamics and intracellular transport in eukaryotes. The early branching kinetoplastid protozoan <i>Trypanosoma brucei</i> has an expanded repertoire of kinetoplastid-specific kinesins and orphan kinesins, many of which have unknown functions. We report here the identification of an orphan kinesin named KIN-G that plays an essential role in maintaining hook complex integrity and promoting Golgi biogenesis in <i>T. brucei</i>. KIN-G localizes to the distal portion of the centrin arm of the flagellum-associated hook complex through association with the centrin arm protein TbCentrin4. Knockdown of KIN-G in <i>T. brucei</i> disrupts the integrity of the hook complex by reducing the length of the centrin arm and eliminating the shank part of the hook complex, thereby impairing flagellum attachment zone elongation and flagellum positioning, which leads to unequal cytokinesis. KIN-G associates with Golgi through a centrin arm-localized Golgi peripheral protein named CAAP1, which maintains Golgi-centrin arm association to facilitate Golgi biogenesis. Knockdown of KIN-G impairs Golgi biogenesis by disrupting CAAP1 at the centrin arm, thereby impairing the maturation of centrin arm-associated Golgi. <i>In vitro</i> microtubule gliding assays demonstrate that KIN-G is a plus end-directed motor protein, and its motor activity is required for hook complex assembly and Golgi biogenesis. Together, these results identify a kinesin motor protein for promoting hook complex assembly and uncover a control mechanism for Golgi biogenesis through KIN-G-mediated maintenance of Golgi-hook complex association.IMPORTANCE<i>Trypanosoma brucei</i> has a motile flagellum, which controls cell motility, cell morphogenesis, cell division, and cell-cell communication, and a set of cytoskeletal structures, including the hook complex and the centrin arm, associates with the flagellum. Despite the essentiality of these flagellum-associated cytoskeletal structures, their mechanistic roles and the function of their associated proteins remain poorly understood. Here, we demonstrate that the orphan kinesin KIN-G functions to promote the biogenesis of the hook complex and the Golgi apparatus. KIN-G exerts this function by mediating the association between centrin arm and Golgi through the centrin arm protein TbCentrin4 and a novel Golgi scaffold protein named CAAP1, thereby bridging the two structures and maintaining their close association to facilitate the assembly of the two structures. These findings uncover the essential involvement of a kinesin motor protein in regulating the biogenesis of the hook complex and the Golgi in trypanosomes.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0263424"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mBio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mbio.02634-24","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Kinesins are microtubule-based motor proteins that play diverse cellular functions by regulating microtubule dynamics and intracellular transport in eukaryotes. The early branching kinetoplastid protozoan Trypanosoma brucei has an expanded repertoire of kinetoplastid-specific kinesins and orphan kinesins, many of which have unknown functions. We report here the identification of an orphan kinesin named KIN-G that plays an essential role in maintaining hook complex integrity and promoting Golgi biogenesis in T. brucei. KIN-G localizes to the distal portion of the centrin arm of the flagellum-associated hook complex through association with the centrin arm protein TbCentrin4. Knockdown of KIN-G in T. brucei disrupts the integrity of the hook complex by reducing the length of the centrin arm and eliminating the shank part of the hook complex, thereby impairing flagellum attachment zone elongation and flagellum positioning, which leads to unequal cytokinesis. KIN-G associates with Golgi through a centrin arm-localized Golgi peripheral protein named CAAP1, which maintains Golgi-centrin arm association to facilitate Golgi biogenesis. Knockdown of KIN-G impairs Golgi biogenesis by disrupting CAAP1 at the centrin arm, thereby impairing the maturation of centrin arm-associated Golgi. In vitro microtubule gliding assays demonstrate that KIN-G is a plus end-directed motor protein, and its motor activity is required for hook complex assembly and Golgi biogenesis. Together, these results identify a kinesin motor protein for promoting hook complex assembly and uncover a control mechanism for Golgi biogenesis through KIN-G-mediated maintenance of Golgi-hook complex association.IMPORTANCETrypanosoma brucei has a motile flagellum, which controls cell motility, cell morphogenesis, cell division, and cell-cell communication, and a set of cytoskeletal structures, including the hook complex and the centrin arm, associates with the flagellum. Despite the essentiality of these flagellum-associated cytoskeletal structures, their mechanistic roles and the function of their associated proteins remain poorly understood. Here, we demonstrate that the orphan kinesin KIN-G functions to promote the biogenesis of the hook complex and the Golgi apparatus. KIN-G exerts this function by mediating the association between centrin arm and Golgi through the centrin arm protein TbCentrin4 and a novel Golgi scaffold protein named CAAP1, thereby bridging the two structures and maintaining their close association to facilitate the assembly of the two structures. These findings uncover the essential involvement of a kinesin motor protein in regulating the biogenesis of the hook complex and the Golgi in trypanosomes.

布氏锥虫中的一种孤儿驱动蛋白调控钩状复合体的组装和高尔基体的生物发生。
驱动蛋白是基于微管的运动蛋白,在真核生物中通过调节微管动力学和细胞内运输发挥多种细胞功能。早期分支原生动物布氏锥虫(Trypanosoma brucei)的驱动蛋白和孤岛驱动蛋白种类繁多,其中许多功能尚不清楚。我们在本文中报道了一种名为 KIN-G 的孤儿驱动蛋白,它在维持钩状复合体完整性和促进布氏原虫高尔基体生物发生方面发挥着重要作用。KIN-G 通过与中心蛋白臂蛋白 TbCentrin4 的结合定位在鞭毛相关钩状复合体中心蛋白臂的远端。在布鲁氏菌中敲除 KIN-G 会降低中心蛋白臂的长度并消除钩状复合体的柄部,从而破坏钩状复合体的完整性,影响鞭毛附着区的伸长和鞭毛的定位,导致不平等的细胞分裂。KIN-G通过中心蛋白臂定位的高尔基外周蛋白CAAP1与高尔基体结合,CAAP1维持高尔基体与中心蛋白臂的结合,促进高尔基体的生物发生。通过破坏中心蛋白臂上的 CAAP1,敲除 KIN-G 会损害高尔基体的生物发生,从而影响中心蛋白臂相关高尔基体的成熟。体外微管滑行实验证明,KIN-G 是一种加端定向运动蛋白,其运动活性是钩状复合体组装和高尔基体生物发生所必需的。这些结果共同发现了一种促进钩状复合体组装的驱动蛋白,并揭示了通过 KIN-G 介导的高尔基-钩状复合体结合的高尔基体生物发生的控制机制。尽管这些与鞭毛相关的细胞骨架结构非常重要,但人们对它们的机理作用及其相关蛋白的功能仍然知之甚少。在此,我们证明了孤儿驱动蛋白 KIN-G 在促进钩状复合体和高尔基体的生物形成方面的功能。KIN-G 通过中心蛋白臂蛋白 TbCentrin4 和一种名为 CAAP1 的新型高尔基体支架蛋白介导中心蛋白臂和高尔基体之间的结合,从而在这两种结构之间架起桥梁,并保持它们的紧密结合,促进这两种结构的组装。这些发现揭示了驱动蛋白在调节锥虫钩状复合体和高尔基体的生物发生过程中的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
mBio
mBio MICROBIOLOGY-
CiteScore
10.50
自引率
3.10%
发文量
762
审稿时长
1 months
期刊介绍: mBio® is ASM''s first broad-scope, online-only, open access journal. mBio offers streamlined review and publication of the best research in microbiology and allied fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信