Comprehensive analysis of deflazacort oxidative degradation: Insights into novel degradation products and mechanisms.

IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL
Airton G Salles, Manoel T Rodrigues, Bruno B Guidotti, Paulo C P Rosa
{"title":"Comprehensive analysis of deflazacort oxidative degradation: Insights into novel degradation products and mechanisms.","authors":"Airton G Salles, Manoel T Rodrigues, Bruno B Guidotti, Paulo C P Rosa","doi":"10.1016/j.xphs.2024.10.048","DOIUrl":null,"url":null,"abstract":"<p><p>The oxidative degradation pathways of deflazacort (DFL) were investigated to address the gap in understanding its degradation products, focusing on reactions with oxidative stressors such as hydrogen peroxide and 4,4'-azobis (4-cyanovaleric acid) (ACVA). Using HPLC-PDA, high-resolution mass spectrometry (HRMS), NMR and IR spectroscopy, four novel degradation products were identified and structurally characterized. Two of these products were isolated using preparative HPLC before characterization. Hydrogen peroxide led to the formation of three novel products (DP-1, DP-2, and DP-3), while ACVA resulted in a single novel product (DP-4). Mechanistic and kinetic experiments supported the proposed degradation pathways under the various oxidative stress conditions studied, revealing distinct rates of formation for the degradation products during the time-course study. The identification and detailed structural elucidation of these degradation products provide critical insights into the chemical stability and potential reactivity of DFL under oxidative stress. These findings underscore the importance of comprehensive stability testing for ensuring drug safety and efficacy, and offer valuable data for future research on the toxicity and pharmacological impact of DFL degradation products.</p>","PeriodicalId":16741,"journal":{"name":"Journal of pharmaceutical sciences","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xphs.2024.10.048","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

The oxidative degradation pathways of deflazacort (DFL) were investigated to address the gap in understanding its degradation products, focusing on reactions with oxidative stressors such as hydrogen peroxide and 4,4'-azobis (4-cyanovaleric acid) (ACVA). Using HPLC-PDA, high-resolution mass spectrometry (HRMS), NMR and IR spectroscopy, four novel degradation products were identified and structurally characterized. Two of these products were isolated using preparative HPLC before characterization. Hydrogen peroxide led to the formation of three novel products (DP-1, DP-2, and DP-3), while ACVA resulted in a single novel product (DP-4). Mechanistic and kinetic experiments supported the proposed degradation pathways under the various oxidative stress conditions studied, revealing distinct rates of formation for the degradation products during the time-course study. The identification and detailed structural elucidation of these degradation products provide critical insights into the chemical stability and potential reactivity of DFL under oxidative stress. These findings underscore the importance of comprehensive stability testing for ensuring drug safety and efficacy, and offer valuable data for future research on the toxicity and pharmacological impact of DFL degradation products.

地氟沙星氧化降解综合分析:洞察新型降解产物和机制。
为了填补对其降解产物了解的空白,研究人员研究了去氯羟酸(DFL)的氧化降解途径,重点是与过氧化氢和 4,4'-偶氮双(4-氰基戊酸)(ACVA)等氧化应激源的反应。利用 HPLC-PDA、高分辨率质谱(HRMS)、核磁共振(NMR)和红外光谱,确定了四种新型降解产物,并对其进行了结构鉴定。其中两种产物在表征前使用制备型高效液相色谱进行了分离。过氧化氢导致了三种新型产物(DP-1、DP-2 和 DP-3)的生成,而 ACVA 则导致了一种新型产物(DP-4)的生成。机理和动力学实验支持了在各种氧化应激条件下的降解途径,揭示了降解产物在时间历程研究中的不同形成速率。对这些降解产物的鉴定和详细的结构阐释为深入了解 DFL 在氧化应激下的化学稳定性和潜在反应性提供了重要依据。这些发现强调了全面的稳定性测试对确保药物安全性和有效性的重要性,并为今后研究 DFL 降解产物的毒性和药理作用提供了宝贵的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
13.20%
发文量
367
审稿时长
33 days
期刊介绍: The Journal of Pharmaceutical Sciences will publish original research papers, original research notes, invited topical reviews (including Minireviews), and editorial commentary and news. The area of focus shall be concepts in basic pharmaceutical science and such topics as chemical processing of pharmaceuticals, including crystallization, lyophilization, chemical stability of drugs, pharmacokinetics, biopharmaceutics, pharmacodynamics, pro-drug developments, metabolic disposition of bioactive agents, dosage form design, protein-peptide chemistry and biotechnology specifically as these relate to pharmaceutical technology, and targeted drug delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信