Xina Yu , Shanshan Song , Zhanhua Li , Tiantian Wang , Hui Huang , Qing Shen , Zongyuan Wu , Pei Luo
{"title":"Targeted LC-MS/MS method of oxylipin profiling reveals differentially expressed serum metabolites in type 2 diabetes mice with panaxynol","authors":"Xina Yu , Shanshan Song , Zhanhua Li , Tiantian Wang , Hui Huang , Qing Shen , Zongyuan Wu , Pei Luo","doi":"10.1016/j.jpba.2024.116540","DOIUrl":null,"url":null,"abstract":"<div><div>Panaxynol is a bioactive polyacetylene in food plants; however, its specific benefits in diabetes and metabolic disorders remain unclear. Previous studies have mainly focused on biochemical indicators and clinical evaluations. Limited research has systematically elucidated the beneficial effects of panaxynol from the oxylipins perspective. In this study, we employed an oxylipin analysis platform we previously established using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) based on the multiple reaction monitoring (MRM) method for the profiling of oxylipins. After a 7-week administration of panaxynol to db/db mice, significant alterations in serum oxylipins and potential benefits to hyperglycemia, insulin resistance, and hepatic steatosis were observed. Our analysis also revealed correlations among epoxygenase products derived from arachidonic acid (AA), linoleic acid (LA), and α-linolenic acid (ALA) via cytochrome P450 (CYP) pathways. Furthermore, six potential oxylipins were identified, as offering insights into the mechanisms by which panaxynol may modulate diabetes. These results provide the first <em>in vivo</em> evidence of the impact of panaxynol on oxylipin metabolism and lay the foundation for developing panaxynol as a nutraceutical for diabetes management.</div></div>","PeriodicalId":16685,"journal":{"name":"Journal of pharmaceutical and biomedical analysis","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical and biomedical analysis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S073170852400582X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Panaxynol is a bioactive polyacetylene in food plants; however, its specific benefits in diabetes and metabolic disorders remain unclear. Previous studies have mainly focused on biochemical indicators and clinical evaluations. Limited research has systematically elucidated the beneficial effects of panaxynol from the oxylipins perspective. In this study, we employed an oxylipin analysis platform we previously established using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) based on the multiple reaction monitoring (MRM) method for the profiling of oxylipins. After a 7-week administration of panaxynol to db/db mice, significant alterations in serum oxylipins and potential benefits to hyperglycemia, insulin resistance, and hepatic steatosis were observed. Our analysis also revealed correlations among epoxygenase products derived from arachidonic acid (AA), linoleic acid (LA), and α-linolenic acid (ALA) via cytochrome P450 (CYP) pathways. Furthermore, six potential oxylipins were identified, as offering insights into the mechanisms by which panaxynol may modulate diabetes. These results provide the first in vivo evidence of the impact of panaxynol on oxylipin metabolism and lay the foundation for developing panaxynol as a nutraceutical for diabetes management.
期刊介绍:
This journal is an international medium directed towards the needs of academic, clinical, government and industrial analysis by publishing original research reports and critical reviews on pharmaceutical and biomedical analysis. It covers the interdisciplinary aspects of analysis in the pharmaceutical, biomedical and clinical sciences, including developments in analytical methodology, instrumentation, computation and interpretation. Submissions on novel applications focusing on drug purity and stability studies, pharmacokinetics, therapeutic monitoring, metabolic profiling; drug-related aspects of analytical biochemistry and forensic toxicology; quality assurance in the pharmaceutical industry are also welcome.
Studies from areas of well established and poorly selective methods, such as UV-VIS spectrophotometry (including derivative and multi-wavelength measurements), basic electroanalytical (potentiometric, polarographic and voltammetric) methods, fluorimetry, flow-injection analysis, etc. are accepted for publication in exceptional cases only, if a unique and substantial advantage over presently known systems is demonstrated. The same applies to the assay of simple drug formulations by any kind of methods and the determination of drugs in biological samples based merely on spiked samples. Drug purity/stability studies should contain information on the structure elucidation of the impurities/degradants.