Instrumented assessment of lower and upper motor neuron signs in amyotrophic lateral sclerosis using robotic manipulation: an explorative study.

IF 5.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL
D J L Stikvoort García, B T H M Sleutjes, W Mugge, J J Plouvier, H S Goedee, A C Schouten, F C T van der Helm, L H van den Berg
{"title":"Instrumented assessment of lower and upper motor neuron signs in amyotrophic lateral sclerosis using robotic manipulation: an explorative study.","authors":"D J L Stikvoort García, B T H M Sleutjes, W Mugge, J J Plouvier, H S Goedee, A C Schouten, F C T van der Helm, L H van den Berg","doi":"10.1186/s12984-024-01485-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Amyotrophic lateral sclerosis (ALS) is a lethal progressive neurodegenerative disease characterized by upper motor neuron (UMN) and lower motor neuron (LMN) involvement. Their varying degree of involvement results in a clinical heterogenous picture, making clinical assessments of UMN signs in patients with ALS often challenging. We therefore explored whether instrumented assessment using robotic manipulation could potentially be a valuable tool to study signs of UMN involvement.</p><p><strong>Methods: </strong>We examined the dynamics of the wrist joint of 15 patients with ALS and 15 healthy controls using a Wristalyzer single-axis robotic manipulator and electromyography (EMG) recordings in the flexor and extensor muscles in the forearm. Multi-sinusoidal torque perturbations were applied, during which participants were asked to either relax, comply or resist. A neuromuscular model was used to study muscle viscoelasticity, e.g. stiffness (k) and viscosity (b), and reflexive properties, such as velocity, position and force feedback gains (kv, kp and kf, respectively) that dominated the responses. We further obtained clinical signs of LMN (muscle strength) and UMN (e.g. reflexes, spasticity) dysfunction, and evaluated their relation with the estimated neuromuscular model parameters.</p><p><strong>Results: </strong>Only force feedback gains (kf) were elevated in patients (p = 0.033) compared to controls. Higher kf, as well as the resulting reflexive torque (Tref), were both associated with more severe UMN dysfunction in the examined arm (p = 0.040 and p < 0.001). Patients with UMN symptoms in the examined arm had increased kf and Tref compared to controls (both p = 0.037). Neither of these measures was related to muscle strength, but muscle stiffness (k) was lower in weaker patients (p = 0.012). All these findings were obtained from the relaxed test. No differences were observed during the instructions comply and resist.</p><p><strong>Conclusions: </strong>This findings are proof-of-concept that instrumented assessment using robotic manipulation is a feasible technique in ALS, which may provide quantitative, operator-independent measures relating to UMN symptoms. Elevated force feedback gains, driving larger reflexive muscle torques, appear to be particularly indicative of clinically established levels of UMN dysfunction in the examined arm.</p>","PeriodicalId":16384,"journal":{"name":"Journal of NeuroEngineering and Rehabilitation","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520903/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroEngineering and Rehabilitation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12984-024-01485-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Amyotrophic lateral sclerosis (ALS) is a lethal progressive neurodegenerative disease characterized by upper motor neuron (UMN) and lower motor neuron (LMN) involvement. Their varying degree of involvement results in a clinical heterogenous picture, making clinical assessments of UMN signs in patients with ALS often challenging. We therefore explored whether instrumented assessment using robotic manipulation could potentially be a valuable tool to study signs of UMN involvement.

Methods: We examined the dynamics of the wrist joint of 15 patients with ALS and 15 healthy controls using a Wristalyzer single-axis robotic manipulator and electromyography (EMG) recordings in the flexor and extensor muscles in the forearm. Multi-sinusoidal torque perturbations were applied, during which participants were asked to either relax, comply or resist. A neuromuscular model was used to study muscle viscoelasticity, e.g. stiffness (k) and viscosity (b), and reflexive properties, such as velocity, position and force feedback gains (kv, kp and kf, respectively) that dominated the responses. We further obtained clinical signs of LMN (muscle strength) and UMN (e.g. reflexes, spasticity) dysfunction, and evaluated their relation with the estimated neuromuscular model parameters.

Results: Only force feedback gains (kf) were elevated in patients (p = 0.033) compared to controls. Higher kf, as well as the resulting reflexive torque (Tref), were both associated with more severe UMN dysfunction in the examined arm (p = 0.040 and p < 0.001). Patients with UMN symptoms in the examined arm had increased kf and Tref compared to controls (both p = 0.037). Neither of these measures was related to muscle strength, but muscle stiffness (k) was lower in weaker patients (p = 0.012). All these findings were obtained from the relaxed test. No differences were observed during the instructions comply and resist.

Conclusions: This findings are proof-of-concept that instrumented assessment using robotic manipulation is a feasible technique in ALS, which may provide quantitative, operator-independent measures relating to UMN symptoms. Elevated force feedback gains, driving larger reflexive muscle torques, appear to be particularly indicative of clinically established levels of UMN dysfunction in the examined arm.

利用机器人操作对肌萎缩性脊髓侧索硬化症患者的下运动神经元和上运动神经元体征进行仪器评估:一项探索性研究。
背景:肌萎缩侧索硬化症(ALS)是一种致命的进行性神经退行性疾病,其特征是上运动神经元(UMN)和下运动神经元(LMN)受累。上运动神经元和下运动神经元受累程度不同,临床表现也不尽相同,因此对 ALS 患者上运动神经元体征的临床评估往往具有挑战性。因此,我们探讨了使用机器人操作进行仪器评估是否有可能成为研究 UMN 受累迹象的重要工具:我们使用 Wristalyzer 单轴机器人操纵器和前臂屈肌和伸肌的肌电图(EMG)记录,检查了 15 名 ALS 患者和 15 名健康对照者的腕关节动态。研究人员施加了多正弦力矩扰动,在此期间要求参与者放松、顺从或抵抗。我们使用神经肌肉模型来研究肌肉的粘弹性,如硬度(k)和粘度(b),以及反射特性,如主导反应的速度、位置和力反馈增益(分别为 kv、kp 和 kf)。我们进一步获得了 LMN(肌力)和 UMN(如反射、痉挛)功能障碍的临床表现,并评估了它们与估计的神经肌肉模型参数之间的关系:结果:与对照组相比,患者只有力反馈增益(kf)升高(p = 0.033)。较高的 kf 以及由此产生的反射力矩(Tref)都与受检手臂更严重的 UMN 功能障碍有关(p = 0.040 和 p 结论:这一研究结果证明了一个概念,即患者的 UMN 功能障碍比对照组更严重:这一研究结果证明,使用机器人操作进行仪器评估是一种可行的 ALS 技术,可提供与 UMN 症状相关的独立于操作者的定量测量。力反馈增益的升高会驱动更大的反射性肌肉力矩,这似乎特别表明受检手臂的UMN功能障碍已达到临床确定的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of NeuroEngineering and Rehabilitation
Journal of NeuroEngineering and Rehabilitation 工程技术-工程:生物医学
CiteScore
9.60
自引率
3.90%
发文量
122
审稿时长
24 months
期刊介绍: Journal of NeuroEngineering and Rehabilitation considers manuscripts on all aspects of research that result from cross-fertilization of the fields of neuroscience, biomedical engineering, and physical medicine & rehabilitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信