Performance of a large language model for identifying central line-associated bloodstream infections (CLABSI) using real clinical notes.

IF 3 4区 医学 Q2 INFECTIOUS DISEASES
Guillermo Rodriguez-Nava, Goar Egoryan, Katherine E Goodman, Daniel J Morgan, Jorge L Salinas
{"title":"Performance of a large language model for identifying central line-associated bloodstream infections (CLABSI) using real clinical notes.","authors":"Guillermo Rodriguez-Nava, Goar Egoryan, Katherine E Goodman, Daniel J Morgan, Jorge L Salinas","doi":"10.1017/ice.2024.164","DOIUrl":null,"url":null,"abstract":"<p><p>We evaluated one of the first secure large language models approved for protected health information, for identifying central line-associated bloodstream infections (CLABSIs) using real clinical notes. Despite no pretraining, the model demonstrated rapid assessment and high sensitivity for CLABSI identification. Performance would improve with access to more patient data.</p>","PeriodicalId":13663,"journal":{"name":"Infection Control and Hospital Epidemiology","volume":" ","pages":"1-4"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection Control and Hospital Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/ice.2024.164","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

We evaluated one of the first secure large language models approved for protected health information, for identifying central line-associated bloodstream infections (CLABSIs) using real clinical notes. Despite no pretraining, the model demonstrated rapid assessment and high sensitivity for CLABSI identification. Performance would improve with access to more patient data.

使用真实临床笔记识别中心静脉相关血流感染 (CLABSI) 的大型语言模型的性能。
我们对首批获准用于受保护健康信息的安全大型语言模型之一进行了评估,以利用真实的临床记录识别中心静脉相关性血流感染(CLABSI)。尽管没有预先训练,但该模型在 CLABSI 识别方面表现出了快速评估和高灵敏度。在获得更多患者数据后,性能将得到改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
6.70%
发文量
289
审稿时长
3-8 weeks
期刊介绍: Infection Control and Hospital Epidemiology provides original, peer-reviewed scientific articles for anyone involved with an infection control or epidemiology program in a hospital or healthcare facility. Written by infection control practitioners and epidemiologists and guided by an editorial board composed of the nation''s leaders in the field, ICHE provides a critical forum for this vital information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信