Jahui Pan, Yangzuyi Yu, Man Li, Wanxin Wei, Shuyu Chen, Heyi Zheng, Yanbin He, Yuanqing Li
{"title":"A Multimodal Consistency-Based Self-Supervised Contrastive Learning Framework for Automated Sleep Staging in Patients with Disorders of Consciousness.","authors":"Jahui Pan, Yangzuyi Yu, Man Li, Wanxin Wei, Shuyu Chen, Heyi Zheng, Yanbin He, Yuanqing Li","doi":"10.1109/JBHI.2024.3487657","DOIUrl":null,"url":null,"abstract":"<p><p>Sleep is a fundamental human activity, and automated sleep staging holds considerable investigational potential. Despite numerous deep learning methods proposed for sleep staging that exhibit notable performance, several challenges remain unresolved, including inadequate representation and generalization capabilities, limitations in multimodal feature extraction, the scarcity of labeled data, and the restricted practical application for patients with disorder of consciousness (DOC). This paper proposes MultiConsSleepNet, a multimodal consistency-based sleep staging network. This network comprises a unimodal feature extractor and a multimodal consistency feature extractor, aiming to explore universal representations of electroencephalograms (EEGs) and electrooculograms (EOGs) and extract the consistency of intra- and intermodal features. Additionally, self-supervised contrastive learning strategies are designed for unimodal and multimodal consistency learning to address the current situation in clinical practice where it is difficult to obtain high-quality labeled data but has a huge amount of unlabeled data. It can effectively alleviate the model's dependence on labeled data, and improve the model's generalizability for effective migration to DOC patients. Experimental results on three publicly available datasets demonstrate that MultiConsSleepNet achieves state-of-the-art performance in sleep staging with limited labeled data and effectively utilizes unlabeled data, enhancing its practical applicability. Furthermore, the proposed model yields promising results on a self-collected DOC dataset, offering a novel perspective for sleep staging research in patients with DOC.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2024.3487657","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Sleep is a fundamental human activity, and automated sleep staging holds considerable investigational potential. Despite numerous deep learning methods proposed for sleep staging that exhibit notable performance, several challenges remain unresolved, including inadequate representation and generalization capabilities, limitations in multimodal feature extraction, the scarcity of labeled data, and the restricted practical application for patients with disorder of consciousness (DOC). This paper proposes MultiConsSleepNet, a multimodal consistency-based sleep staging network. This network comprises a unimodal feature extractor and a multimodal consistency feature extractor, aiming to explore universal representations of electroencephalograms (EEGs) and electrooculograms (EOGs) and extract the consistency of intra- and intermodal features. Additionally, self-supervised contrastive learning strategies are designed for unimodal and multimodal consistency learning to address the current situation in clinical practice where it is difficult to obtain high-quality labeled data but has a huge amount of unlabeled data. It can effectively alleviate the model's dependence on labeled data, and improve the model's generalizability for effective migration to DOC patients. Experimental results on three publicly available datasets demonstrate that MultiConsSleepNet achieves state-of-the-art performance in sleep staging with limited labeled data and effectively utilizes unlabeled data, enhancing its practical applicability. Furthermore, the proposed model yields promising results on a self-collected DOC dataset, offering a novel perspective for sleep staging research in patients with DOC.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.