Aberrant fragmentomic features of circulating cell-free mitochondrial DNA as novel biomarkers for multi-cancer detection.

IF 9 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Yang Liu, Fan Peng, Siyuan Wang, Huanmin Jiao, Miao Dang, Kaixiang Zhou, Wenjie Guo, Shanshan Guo, Huanqin Zhang, Wenjie Song, Jinliang Xing
{"title":"Aberrant fragmentomic features of circulating cell-free mitochondrial DNA as novel biomarkers for multi-cancer detection.","authors":"Yang Liu, Fan Peng, Siyuan Wang, Huanmin Jiao, Miao Dang, Kaixiang Zhou, Wenjie Guo, Shanshan Guo, Huanqin Zhang, Wenjie Song, Jinliang Xing","doi":"10.1038/s44321-024-00163-6","DOIUrl":null,"url":null,"abstract":"<p><p>Fragmentomic features of circulating cell free mitochondrial DNA (ccf-mtDNA) including fragmentation profile, 5' end base preference and motif diversity are poorly understood. Here, we generated ccf-mtDNA sequencing data of 1607 plasma samples using capture-based next generation sequencing. We firstly found that fragmentomic features of ccf-mtDNA were remarkably different from those of circulating cell free nuclear DNA. Furthermore, region-specific fragmentomic features of ccf-mtDNA were observed, which was associated with protein binding, base composition and special structure of mitochondrial DNA. When comparing to non-cancer controls, six types of cancer patients exhibited aberrant fragmentomic features. Then, cancer detection models were built based on the fragmentomic features. Both internal and external validation cohorts demonstrated the excellent capacity of our model in distinguishing cancer patients from non-cancer control, with all area under curve higher than 0.9322. The overall accuracy of tissue-of-origin was 89.24% and 87.92% for six cancer types in two validation cohort, respectively. Altogether, our study comprehensively describes cancer-specific fragmentomic features of ccf-mtDNA and provides a proof-of-principle for the ccf-mtDNA fragmentomics-based multi-cancer detection and tissue-of-origin classification.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s44321-024-00163-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fragmentomic features of circulating cell free mitochondrial DNA (ccf-mtDNA) including fragmentation profile, 5' end base preference and motif diversity are poorly understood. Here, we generated ccf-mtDNA sequencing data of 1607 plasma samples using capture-based next generation sequencing. We firstly found that fragmentomic features of ccf-mtDNA were remarkably different from those of circulating cell free nuclear DNA. Furthermore, region-specific fragmentomic features of ccf-mtDNA were observed, which was associated with protein binding, base composition and special structure of mitochondrial DNA. When comparing to non-cancer controls, six types of cancer patients exhibited aberrant fragmentomic features. Then, cancer detection models were built based on the fragmentomic features. Both internal and external validation cohorts demonstrated the excellent capacity of our model in distinguishing cancer patients from non-cancer control, with all area under curve higher than 0.9322. The overall accuracy of tissue-of-origin was 89.24% and 87.92% for six cancer types in two validation cohort, respectively. Altogether, our study comprehensively describes cancer-specific fragmentomic features of ccf-mtDNA and provides a proof-of-principle for the ccf-mtDNA fragmentomics-based multi-cancer detection and tissue-of-origin classification.

将循环细胞游离线粒体 DNA 的异常片段组特征作为检测多种癌症的新型生物标记物。
人们对循环游离细胞线粒体 DNA(ccf-mtDNA)的片段组学特征,包括片段轮廓、5'端碱基偏好和基序多样性知之甚少。在此,我们利用基于捕获的新一代测序技术,对1607份血浆样本进行了ccf-mtDNA测序。我们首先发现,ccf-mtDNA的片段组特征与循环细胞游离核DNA的片段组特征明显不同。此外,我们还观察到ccf-mtDNA的区域特异性片段组特征,这与线粒体DNA的蛋白质结合、碱基组成和特殊结构有关。与非癌症对照组相比,六种癌症患者表现出异常片段组特征。然后,根据片段组特征建立了癌症检测模型。内部和外部验证组群都证明了我们的模型在区分癌症患者和非癌症对照组方面的卓越能力,所有模型的曲线下面积都高于 0.9322。在两个验证队列中,六种癌症类型的原发组织总体准确率分别为 89.24% 和 87.92%。总之,我们的研究全面描述了ccf-mtDNA的癌症特异性片段组学特征,为基于ccf-mtDNA片段组学的多癌症检测和原发组织分类提供了原理性证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EMBO Molecular Medicine
EMBO Molecular Medicine 医学-医学:研究与实验
CiteScore
17.70
自引率
0.90%
发文量
105
审稿时长
4-8 weeks
期刊介绍: EMBO Molecular Medicine is an open access journal in the field of experimental medicine, dedicated to science at the interface between clinical research and basic life sciences. In addition to human data, we welcome original studies performed in cells and/or animals provided they demonstrate human disease relevance. To enhance and better specify our commitment to precision medicine, we have expanded the scope of EMM and call for contributions in the following fields: Environmental health and medicine, in particular studies in the field of environmental medicine in its functional and mechanistic aspects (exposome studies, toxicology, biomarkers, modeling, and intervention). Clinical studies and case reports - Human clinical studies providing decisive clues how to control a given disease (epidemiological, pathophysiological, therapeutic, and vaccine studies). Case reports supporting hypothesis-driven research on the disease. Biomedical technologies - Studies that present innovative materials, tools, devices, and technologies with direct translational potential and applicability (imaging technologies, drug delivery systems, tissue engineering, and AI)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信