Muhammad Suleman, Safir Ullah Khan, Shahid Ali, Abdullah Alghamdi, Mohammed Alissa, Rayan Y Mushtaq, Sergio Crovella
{"title":"Probing the Depths of Molecular Complexity: STAT3 as a Key Architect in Colorectal Cancer Pathogenesis.","authors":"Muhammad Suleman, Safir Ullah Khan, Shahid Ali, Abdullah Alghamdi, Mohammed Alissa, Rayan Y Mushtaq, Sergio Crovella","doi":"10.2174/0115665232336447241010094744","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer (CRC) has become a significant threat in recent decades, and its incidence is predicted to continue rising. Despite notable advancements in therapeutic strategies, managing CRC poses complex challenges, primarily due to the lack of clinically feasible therapeutic targets. Among the myriad molecules implicated in CRC, the signal transducer and activator of transcription 3 (STAT3) stands out as a promising target tightly regulated by various genes. This intracellular transcription factor, spanning 750-795 amino acids and weighing approximately 92 kDa, is crucial in key cellular activities such as growth, migration, invasion, inflammation, and angiogenesis. Aberrant activation of STAT3 signaling has been linked to various cancers, including CRC. Therefore, targeting this signaling pathway holds significance for potential CRC treatment strategies.STAT3, as a central intracellular transcription factor, is implicated in colorectal cancer development by activating aberrant signaling pathways. Numerous studies have demonstrated that the abnormal hyperactivation of STAT3 in CRC tissues enhances cell proliferation, suppresses apoptosis, promotes angiogenesis, and facilitates tumor invasion and metastasis. As a focal point in colorectal cancer research, STAT3 emerges as a promising candidate for detecting and treating CRC. This review aims to present recent data on STAT3, emphasizing the activation and functions of STAT3 inhibitors in CRC. Indeed, STAT3 inhibitors have been identified to have therapeutic potential in CRC, especially inhibitors targeting the DNA-binding domain (DBD). Indeed, STAT3 inhibitors have been identified to have a therapeutic potential in CRC, especially the inhibitors targeting the DNA binding domain (DBD). For example, imatinib acts by targeting cell surface receptors, and these inhibitors have shown potential for the control and treatment of tumor growth, angiogenesis, and metastasis. Imatinib, for example acts by targeting cell surface receptors, and these inhibitors have shown the future direction toward the control and treatment of tumor growth, angiogenesis, and metastasis.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115665232336447241010094744","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Colorectal cancer (CRC) has become a significant threat in recent decades, and its incidence is predicted to continue rising. Despite notable advancements in therapeutic strategies, managing CRC poses complex challenges, primarily due to the lack of clinically feasible therapeutic targets. Among the myriad molecules implicated in CRC, the signal transducer and activator of transcription 3 (STAT3) stands out as a promising target tightly regulated by various genes. This intracellular transcription factor, spanning 750-795 amino acids and weighing approximately 92 kDa, is crucial in key cellular activities such as growth, migration, invasion, inflammation, and angiogenesis. Aberrant activation of STAT3 signaling has been linked to various cancers, including CRC. Therefore, targeting this signaling pathway holds significance for potential CRC treatment strategies.STAT3, as a central intracellular transcription factor, is implicated in colorectal cancer development by activating aberrant signaling pathways. Numerous studies have demonstrated that the abnormal hyperactivation of STAT3 in CRC tissues enhances cell proliferation, suppresses apoptosis, promotes angiogenesis, and facilitates tumor invasion and metastasis. As a focal point in colorectal cancer research, STAT3 emerges as a promising candidate for detecting and treating CRC. This review aims to present recent data on STAT3, emphasizing the activation and functions of STAT3 inhibitors in CRC. Indeed, STAT3 inhibitors have been identified to have therapeutic potential in CRC, especially inhibitors targeting the DNA-binding domain (DBD). Indeed, STAT3 inhibitors have been identified to have a therapeutic potential in CRC, especially the inhibitors targeting the DNA binding domain (DBD). For example, imatinib acts by targeting cell surface receptors, and these inhibitors have shown potential for the control and treatment of tumor growth, angiogenesis, and metastasis. Imatinib, for example acts by targeting cell surface receptors, and these inhibitors have shown the future direction toward the control and treatment of tumor growth, angiogenesis, and metastasis.
期刊介绍:
Current Gene Therapy is a bi-monthly peer-reviewed journal aimed at academic and industrial scientists with an interest in major topics concerning basic research and clinical applications of gene and cell therapy of diseases. Cell therapy manuscripts can also include application in diseases when cells have been genetically modified. Current Gene Therapy publishes full-length/mini reviews and original research on the latest developments in gene transfer and gene expression analysis, vector development, cellular genetic engineering, animal models and human clinical applications of gene and cell therapy for the treatment of diseases.
Current Gene Therapy publishes reviews and original research containing experimental data on gene and cell therapy. The journal also includes manuscripts on technological advances, ethical and regulatory considerations of gene and cell therapy. Reviews should provide the reader with a comprehensive assessment of any area of experimental biology applied to molecular medicine that is not only of significance within a particular field of gene therapy and cell therapy but also of interest to investigators in other fields. Authors are encouraged to provide their own assessment and vision for future advances. Reviews are also welcome on late breaking discoveries on which substantial literature has not yet been amassed. Such reviews provide a forum for sharply focused topics of recent experimental investigations in gene therapy primarily to make these results accessible to both clinical and basic researchers. Manuscripts containing experimental data should be original data, not previously published.