Kaige Zheng, Muyan Chen, Xingjianyuan Xu, Peiyi Li, Chengyu Yin, Jie Wang, Boyi Liu
{"title":"Chemokine CXCL13-CXCR5 signaling in neuroinflammation and pathogenesis of chronic pain and neurological diseases.","authors":"Kaige Zheng, Muyan Chen, Xingjianyuan Xu, Peiyi Li, Chengyu Yin, Jie Wang, Boyi Liu","doi":"10.1186/s11658-024-00653-y","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic pain dramatically affects life qualities of the sufferers. It has posed a heavy burden to both patients and the health care system. However, the current treatments for chronic pain are usually insufficient and cause many unwanted side effects. Chemokine C-X-C motif ligand 13 (CXCL13), formerly recognized as a B cell chemokine, binds with the cognate receptor CXCR5, a G-protein-coupled receptor (GPCR), to participate in immune cell recruitments and immune modulations. Recent studies further demonstrated that CXCL13-CXCR5 signaling is implicated in chronic pain via promoting neuroimmune interaction and neuroinflammation in the sensory system. In addition, some latest work also pointed out the involvement of CXCL13-CXCR5 in the pathogenesis of certain neurological diseases, including ischemic stroke and amyotrophic lateral sclerosis. Therefore, we aim to outline the recent findings in regard to the involvement of CXCL13-CXCR5 signaling in chronic pain as well as certain neurological diseases, with the focus on how this chemokine signaling contributes to the pathogenesis of these neurological diseases via regulating neuroimmune interaction and neuroinflammation. Strategies that can specifically target CXCL13-CXCR5 signaling in distinct locations may provide new therapeutic options for these neurological diseases.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"29 1","pages":"134"},"PeriodicalIF":9.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523778/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular & Molecular Biology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s11658-024-00653-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic pain dramatically affects life qualities of the sufferers. It has posed a heavy burden to both patients and the health care system. However, the current treatments for chronic pain are usually insufficient and cause many unwanted side effects. Chemokine C-X-C motif ligand 13 (CXCL13), formerly recognized as a B cell chemokine, binds with the cognate receptor CXCR5, a G-protein-coupled receptor (GPCR), to participate in immune cell recruitments and immune modulations. Recent studies further demonstrated that CXCL13-CXCR5 signaling is implicated in chronic pain via promoting neuroimmune interaction and neuroinflammation in the sensory system. In addition, some latest work also pointed out the involvement of CXCL13-CXCR5 in the pathogenesis of certain neurological diseases, including ischemic stroke and amyotrophic lateral sclerosis. Therefore, we aim to outline the recent findings in regard to the involvement of CXCL13-CXCR5 signaling in chronic pain as well as certain neurological diseases, with the focus on how this chemokine signaling contributes to the pathogenesis of these neurological diseases via regulating neuroimmune interaction and neuroinflammation. Strategies that can specifically target CXCL13-CXCR5 signaling in distinct locations may provide new therapeutic options for these neurological diseases.
期刊介绍:
Cellular & Molecular Biology Letters is an international journal dedicated to the dissemination of fundamental knowledge in all areas of cellular and molecular biology, cancer cell biology, and certain aspects of biochemistry, biophysics and biotechnology.