Megan E Bischoff, Behrouz Shamsaei, Juechen Yang, Dina Secic, Bhargav Vemuri, Julie A Reisz, Angelo D'Alessandro, Caterina Bartolacci, Rafal Adamczak, Lucas Schmidt, Jiang Wang, Amelia Martines, Jahnavi Venkat, Vanina Toffessi Tcheuyap, Jacek Biesiada, Catherine A Behrmann, Katherine E Vest, James Brugarolas, Pier Paolo Scaglioni, David R Plas, Krushna C Patra, Shuchi Gulati, Julio A Landero Figueroa, Jarek Meller, John T Cunningham, Maria F Czyzyk-Krzeska
{"title":"Copper drives remodeling of metabolic state and progression of clear cell renal cell carcinoma.","authors":"Megan E Bischoff, Behrouz Shamsaei, Juechen Yang, Dina Secic, Bhargav Vemuri, Julie A Reisz, Angelo D'Alessandro, Caterina Bartolacci, Rafal Adamczak, Lucas Schmidt, Jiang Wang, Amelia Martines, Jahnavi Venkat, Vanina Toffessi Tcheuyap, Jacek Biesiada, Catherine A Behrmann, Katherine E Vest, James Brugarolas, Pier Paolo Scaglioni, David R Plas, Krushna C Patra, Shuchi Gulati, Julio A Landero Figueroa, Jarek Meller, John T Cunningham, Maria F Czyzyk-Krzeska","doi":"10.1158/2159-8290.CD-24-0187","DOIUrl":null,"url":null,"abstract":"<p><p>Copper (Cu) is a cofactor of cytochrome c oxidase (CuCOX), indispensable for aerobic mitochondrial respiration. This study reveals that advanced clear cell renal cell carcinomas (ccRCCs) accumulate Cu, allocating it to CuCOX. Using a range of orthogonal approaches, including metabolomics, lipidomics, isotope-labeled glucose and glutamine flux analysis, and transcriptomics across tumor samples, cell lines, xenografts, and PDX models, combined with genetic and pharmacological interventions, we explored Cu's role in ccRCC. Elevated Cu levels stimulate CuCOX biogenesis, providing bioenergetic and biosynthetic benefits that promote tumor growth. This effect is complemented by glucose-dependent glutathione production, which facilitates detoxification and mitigates Cu-H2O2 toxicity. Single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics reveal increased oxidative metabolism, altered glutathione and Cu metabolism, and diminished HIF activity during ccRCC progression. Thus, Cu drives an integrated oncogenic remodeling of bioenergetics, biosynthesis, and redox homeostasis, fueling ccRCC growth, which can be targeted for new therapeutic approaches.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry Bioconjugate","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2159-8290.CD-24-0187","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Copper (Cu) is a cofactor of cytochrome c oxidase (CuCOX), indispensable for aerobic mitochondrial respiration. This study reveals that advanced clear cell renal cell carcinomas (ccRCCs) accumulate Cu, allocating it to CuCOX. Using a range of orthogonal approaches, including metabolomics, lipidomics, isotope-labeled glucose and glutamine flux analysis, and transcriptomics across tumor samples, cell lines, xenografts, and PDX models, combined with genetic and pharmacological interventions, we explored Cu's role in ccRCC. Elevated Cu levels stimulate CuCOX biogenesis, providing bioenergetic and biosynthetic benefits that promote tumor growth. This effect is complemented by glucose-dependent glutathione production, which facilitates detoxification and mitigates Cu-H2O2 toxicity. Single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics reveal increased oxidative metabolism, altered glutathione and Cu metabolism, and diminished HIF activity during ccRCC progression. Thus, Cu drives an integrated oncogenic remodeling of bioenergetics, biosynthesis, and redox homeostasis, fueling ccRCC growth, which can be targeted for new therapeutic approaches.
期刊介绍:
Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.