Development of a Limosilactobacillus reuteri therapeutic delivery platform with reduced colonization potential.

IF 3.9 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Laura M Alexander, Saima Khalid, Gina M Gallego-Lopez, Theresa J Astmann, Jee-Hwan Oh, Mark Heggen, Phil Huss, Renee Fisher, Amitava Mukherjee, Srivatsan Raman, In Young Choi, Morgan N Smith, Claude J Rogers, Michael W Epperly, Laura J Knoll, Joel S Greenberger, Jan-Peter van Pijkeren
{"title":"Development of a <i>Limosilactobacillus reuteri</i> therapeutic delivery platform with reduced colonization potential.","authors":"Laura M Alexander, Saima Khalid, Gina M Gallego-Lopez, Theresa J Astmann, Jee-Hwan Oh, Mark Heggen, Phil Huss, Renee Fisher, Amitava Mukherjee, Srivatsan Raman, In Young Choi, Morgan N Smith, Claude J Rogers, Michael W Epperly, Laura J Knoll, Joel S Greenberger, Jan-Peter van Pijkeren","doi":"10.1128/aem.00312-24","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial biotherapeutic delivery vehicles have the potential to treat a variety of diseases. This approach obviates the need to purify the recombinant effector molecule, allows delivery of therapeutics <i>in situ</i> via oral or intranasal administration, and protects the effector molecule during gastrointestinal transit. Lactic acid bacteria have been broadly developed as therapeutic delivery vehicles though risks associated with the colonization of a genetically modified microorganism have so-far not been addressed. Here, we present an engineered <i>Limosilactobacillus reuteri</i> strain with reduced colonization potential. We applied a dual-recombineering scheme for efficient barcoding and generated mutants in genes encoding five previously characterized and four uncharacterized putative adhesins. Compared with the wild type, none of the mutants were reduced in their ability to survive gastrointestinal transit in mice. CmbA was identified as a key protein in <i>L. reuteri</i> adhesion to HT-29 and enteroid cells. The nonuple mutant, a single strain with all nine genes encoding adhesins inactivated, had reduced capacity to adhere to enteroid monolayers. The nonuple mutant producing murine IFN-β was equally effective as its wild-type counterpart in mitigating radiation toxicity in mice. Thus, this work established a novel therapeutic delivery platform that lays a foundation for its application in other microbial therapeutic delivery candidates and furthers the progress of the <i>L. reuteri</i> delivery system towards human use.IMPORTANCEOne major advantage to leverage gut microbes that have co-evolved with the vertebrate host is that evolution already has taken care of the difficult task to optimize survival within a complex ecosystem. The availability of the ecological niche will support colonization. However, long-term colonization of a recombinant microbe may not be desirable. Therefore, strategies need to be developed to overcome this potential safety concern. In this work, we developed a single strain in which we inactivated the encoding sortase, and eight genes encoding characterized/putative adhesins. Each individual mutant was characterized for growth and adhesion to epithelial cells. On enteroid cells, the nonuple mutant has a reduced adhesion potential compared with the wild-type strain. In a model of total-body irradiation, the nonuple strain engineered to release murine interferon-β performed comparable to a derivative of the wild-type strain that releases interferon-β. This work is an important step toward the application of recombinant <i>L. reuteri</i> in humans.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/aem.00312-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bacterial biotherapeutic delivery vehicles have the potential to treat a variety of diseases. This approach obviates the need to purify the recombinant effector molecule, allows delivery of therapeutics in situ via oral or intranasal administration, and protects the effector molecule during gastrointestinal transit. Lactic acid bacteria have been broadly developed as therapeutic delivery vehicles though risks associated with the colonization of a genetically modified microorganism have so-far not been addressed. Here, we present an engineered Limosilactobacillus reuteri strain with reduced colonization potential. We applied a dual-recombineering scheme for efficient barcoding and generated mutants in genes encoding five previously characterized and four uncharacterized putative adhesins. Compared with the wild type, none of the mutants were reduced in their ability to survive gastrointestinal transit in mice. CmbA was identified as a key protein in L. reuteri adhesion to HT-29 and enteroid cells. The nonuple mutant, a single strain with all nine genes encoding adhesins inactivated, had reduced capacity to adhere to enteroid monolayers. The nonuple mutant producing murine IFN-β was equally effective as its wild-type counterpart in mitigating radiation toxicity in mice. Thus, this work established a novel therapeutic delivery platform that lays a foundation for its application in other microbial therapeutic delivery candidates and furthers the progress of the L. reuteri delivery system towards human use.IMPORTANCEOne major advantage to leverage gut microbes that have co-evolved with the vertebrate host is that evolution already has taken care of the difficult task to optimize survival within a complex ecosystem. The availability of the ecological niche will support colonization. However, long-term colonization of a recombinant microbe may not be desirable. Therefore, strategies need to be developed to overcome this potential safety concern. In this work, we developed a single strain in which we inactivated the encoding sortase, and eight genes encoding characterized/putative adhesins. Each individual mutant was characterized for growth and adhesion to epithelial cells. On enteroid cells, the nonuple mutant has a reduced adhesion potential compared with the wild-type strain. In a model of total-body irradiation, the nonuple strain engineered to release murine interferon-β performed comparable to a derivative of the wild-type strain that releases interferon-β. This work is an important step toward the application of recombinant L. reuteri in humans.

开发具有降低定植可能性的Limosilactobacillus reuteri治疗递送平台。
细菌生物治疗载体具有治疗多种疾病的潜力。这种方法无需纯化重组效应分子,可通过口服或鼻内给药就地给药,并在胃肠道转运过程中保护效应分子。乳酸菌已被广泛开发为治疗载体,但与转基因微生物定植相关的风险迄今尚未得到解决。在这里,我们提出了一种具有降低定植潜力的工程化Limosilactobacillus reuteri菌株。我们采用了双重组方案来实现高效的条形码编码,并生成了编码五种先前表征的基因和四种未表征的推测粘附蛋白的突变体。与野生型相比,所有突变体在小鼠胃肠道中的存活能力都没有降低。CmbA 被鉴定为路特氏菌粘附 HT-29 和肠细胞的关键蛋白。非单倍突变体是指九个编码粘附蛋白的基因全部失活的单一菌株,其粘附肠道单层细胞的能力降低。产生小鼠 IFN-β 的非倍突变体在减轻小鼠的辐射毒性方面与野生型突变体同样有效。因此,这项工作建立了一个新的治疗递送平台,为其在其他候选微生物治疗递送中的应用奠定了基础,并推动了L. reuteri递送系统在人类使用方面的进展。生态位的可用性将支持定殖。然而,重组微生物的长期定殖可能并不可取。因此,需要制定策略来克服这一潜在的安全问题。在这项工作中,我们开发了一种单一菌株,在该菌株中,我们使编码分选酶的基因和编码特征性/功能性粘附素的八个基因失活。每个突变体都具有生长和粘附上皮细胞的特征。与野生型菌株相比,非多重突变体在肠细胞上的粘附潜力降低。在全身照射模型中,释放小鼠干扰素-β的无uple菌株与释放干扰素-β的野生型菌株的衍生物表现相当。这项工作是将重组 L. reuteri 应用于人类的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied and Environmental Microbiology
Applied and Environmental Microbiology 生物-生物工程与应用微生物
CiteScore
7.70
自引率
2.30%
发文量
730
审稿时长
1.9 months
期刊介绍: Applied and Environmental Microbiology (AEM) publishes papers that make significant contributions to (a) applied microbiology, including biotechnology, protein engineering, bioremediation, and food microbiology, (b) microbial ecology, including environmental, organismic, and genomic microbiology, and (c) interdisciplinary microbiology, including invertebrate microbiology, plant microbiology, aquatic microbiology, and geomicrobiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信