Chen Wang, Fengying Yuan, Zichao Yan, Tianqi Zhang, Chenchen Fu, Ya Li, Guidong Dai, Hyeong Seok Kim, Shuwei Xia, Liangmin Yu, Snehasish Debnath, Wen Xiu Ren, Jian Shu, Meng Qiu, Jong Seung Kim
{"title":"High Entropy 2D Layered Double Hydroxide Nanosheet Toward Cascaded Nanozyme-Initiated Chemodynamic and Immune Synergistic Therapy.","authors":"Chen Wang, Fengying Yuan, Zichao Yan, Tianqi Zhang, Chenchen Fu, Ya Li, Guidong Dai, Hyeong Seok Kim, Shuwei Xia, Liangmin Yu, Snehasish Debnath, Wen Xiu Ren, Jian Shu, Meng Qiu, Jong Seung Kim","doi":"10.1021/jacs.4c04523","DOIUrl":null,"url":null,"abstract":"<p><p>High-entropy nanomaterials (HEMs) are a hot topic in the fields of energy and catalysis. However, in terms of promising biomedical applications, potential therapeutic studies involving HEMs are unprecedented. Herein, we demonstrated high entropy two-dimensional layered double hydroxide (<b>HE-LDH</b>) nanoplatforms with versatile physicochemical advantages that reprogram the tumor microenvironment (TME) and provide antitumor treatment via cascaded nanoenzyme-initiated chemodynamic and immune synergistic therapy. In response to the TME, the multifunctional <b>HE-LDHs</b> sequentially release metal ions, such as Co<sup>2+</sup>, Fe<sup>3+</sup>, and Cu<sup>2+</sup>, exhibiting exquisite superoxide dismutase (SOD), peroxidase (POD), and glutathione peroxidase (GPX) activities. The multiple enzymatic activities convert specific tumor metabolites into a continuous supply of cytotoxic reactive oxygen species (ROS) to relieve hypoxia under a TME. Thus, <b>HE-LDHs</b> facilitate robust nanozyme-initiated chemodynamic therapy (NCDT), achieving high therapeutic efficacy without obvious side effects. In addition, the release of Zn<sup>2+</sup> from the <b>HE-LDH</b> matrix triggers the cyclic GMP-AMP synthase/stimulator of interferon gene (cGAS/STING) signaling pathway, boosting the innate immunotherapeutic efficacy. The intratumoral applications of the nanocomposite in tumor-bearing mice models indicate that <b>HE-LDH</b>-mediated NCDT and immune synergistic therapy effectively upregulated the expression of relevant antitumor cytokines and induced cytotoxic T lymphocyte infiltration, showing superior efficacy in inhibiting tumor growth. Therefore, this work opens a new research direction toward synchronized NCDT and immunotherapy of tumors using HEMs for advanced healthcare.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":"136-148"},"PeriodicalIF":14.4000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c04523","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High-entropy nanomaterials (HEMs) are a hot topic in the fields of energy and catalysis. However, in terms of promising biomedical applications, potential therapeutic studies involving HEMs are unprecedented. Herein, we demonstrated high entropy two-dimensional layered double hydroxide (HE-LDH) nanoplatforms with versatile physicochemical advantages that reprogram the tumor microenvironment (TME) and provide antitumor treatment via cascaded nanoenzyme-initiated chemodynamic and immune synergistic therapy. In response to the TME, the multifunctional HE-LDHs sequentially release metal ions, such as Co2+, Fe3+, and Cu2+, exhibiting exquisite superoxide dismutase (SOD), peroxidase (POD), and glutathione peroxidase (GPX) activities. The multiple enzymatic activities convert specific tumor metabolites into a continuous supply of cytotoxic reactive oxygen species (ROS) to relieve hypoxia under a TME. Thus, HE-LDHs facilitate robust nanozyme-initiated chemodynamic therapy (NCDT), achieving high therapeutic efficacy without obvious side effects. In addition, the release of Zn2+ from the HE-LDH matrix triggers the cyclic GMP-AMP synthase/stimulator of interferon gene (cGAS/STING) signaling pathway, boosting the innate immunotherapeutic efficacy. The intratumoral applications of the nanocomposite in tumor-bearing mice models indicate that HE-LDH-mediated NCDT and immune synergistic therapy effectively upregulated the expression of relevant antitumor cytokines and induced cytotoxic T lymphocyte infiltration, showing superior efficacy in inhibiting tumor growth. Therefore, this work opens a new research direction toward synchronized NCDT and immunotherapy of tumors using HEMs for advanced healthcare.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.