Assembly of a Heterobimetallic Fe/Mn Cofactor in the para-Aminobenzoate Synthase Chlamydia Protein Associating with Death Domains (CADD) Initiates Long-Range Radical Hole-Hopping.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Han N Phan, Paul D Swartz, Medha Gangopadhyay, Yisong Guo, Alex I Smirnov, Thomas M Makris
{"title":"Assembly of a Heterobimetallic Fe/Mn Cofactor in the <i>para</i>-Aminobenzoate Synthase Chlamydia Protein Associating with Death Domains (CADD) Initiates Long-Range Radical Hole-Hopping.","authors":"Han N Phan, Paul D Swartz, Medha Gangopadhyay, Yisong Guo, Alex I Smirnov, Thomas M Makris","doi":"10.1021/acs.biochem.4c00326","DOIUrl":null,"url":null,"abstract":"<p><p>Chlamydia protein associating with death domains (<i>Ct</i>CADD) is involved in the biosynthesis of <i>p</i>-aminobenzoic acid (pABA) for integration into folate, a critical cofactor that is required for pathogenic survival. CADD activates dioxygen and utilizes its own tyrosine and lysine as synthons to furnish the carboxylate, carbon backbone, and amine group of pABA in a complex multistep mechanism. Unlike other members of the heme oxygenase-like dimetal oxidase (HDO) superfamily that typically house an Fe<sub>2</sub> cofactor, previous activity studies have shown that <i>Ct</i>CADD likely uses a heterobimetallic Fe/Mn center. The structure of the Fe<sup>2+</sup>/Mn<sup>2+</sup> cofactor and how the conserved HDO scaffold mediates metal selectivity have remained enigmatic. Adopting an <i>in crystallo</i> metalation approach, <i>Ct</i>CADD was solved in the apo, Fe<sup>2+</sup><sub>2</sub>, Mn<sup>2+</sup><sub>2</sub>, and catalytically active Fe<sup>2+</sup>/Mn<sup>2+</sup> forms to identify the probable site for Mn binding. The analysis of <i>Ct</i>CADD active-site variants further reinforces the importance of the secondary coordination sphere on cofactor preference for competent pABA formation. Rapid kinetic optical and electron paramagnetic resonance (EPR) studies show that the heterobimetallic cofactor selectively reacts with dioxygen and likely initiates pABA assembly through the formation of a transient tyrosine radical intermediate and a resultant heterobimetallic Mn<sup>3+</sup>/Fe<sup>3+</sup> cluster.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00326","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chlamydia protein associating with death domains (CtCADD) is involved in the biosynthesis of p-aminobenzoic acid (pABA) for integration into folate, a critical cofactor that is required for pathogenic survival. CADD activates dioxygen and utilizes its own tyrosine and lysine as synthons to furnish the carboxylate, carbon backbone, and amine group of pABA in a complex multistep mechanism. Unlike other members of the heme oxygenase-like dimetal oxidase (HDO) superfamily that typically house an Fe2 cofactor, previous activity studies have shown that CtCADD likely uses a heterobimetallic Fe/Mn center. The structure of the Fe2+/Mn2+ cofactor and how the conserved HDO scaffold mediates metal selectivity have remained enigmatic. Adopting an in crystallo metalation approach, CtCADD was solved in the apo, Fe2+2, Mn2+2, and catalytically active Fe2+/Mn2+ forms to identify the probable site for Mn binding. The analysis of CtCADD active-site variants further reinforces the importance of the secondary coordination sphere on cofactor preference for competent pABA formation. Rapid kinetic optical and electron paramagnetic resonance (EPR) studies show that the heterobimetallic cofactor selectively reacts with dioxygen and likely initiates pABA assembly through the formation of a transient tyrosine radical intermediate and a resultant heterobimetallic Mn3+/Fe3+ cluster.

对氨基苯甲酸酯合成酶衣原体蛋白与死亡结构域(CADD)中的异二金属铁/锰辅助因子的组装启动了远距离自由基跳孔。
与死亡结构域相关的衣原体蛋白(CtCADD)参与对氨基苯甲酸(pABA)的生物合成,将其整合到叶酸中,叶酸是病原体生存所需的重要辅助因子。CADD 激活二氧,并利用自身的酪氨酸和赖氨酸作为合成子,在一个复杂的多步骤机制中提供 pABA 的羧基、碳骨和胺基。与血红素加氧酶样二金属氧化酶(HDO)超家族中通常含有 Fe2 辅助因子的其他成员不同,以前的活性研究表明,CtCADD 很可能使用了异金属 Fe/Mn 中心。Fe2+/Mn2+辅助因子的结构以及保守的 HDO 支架如何介导金属选择性一直是个谜。采用结晶金属化方法,解决了 CtCADD 的 apo、Fe2+2、Mn2+2 和催化活性 Fe2+/Mn2+ 形式,以确定 Mn 结合的可能位点。对 CtCADD 活性位点变体的分析进一步加强了二级配位球对形成有效 pABA 的辅助因子偏好的重要性。快速动力学光学和电子顺磁共振(EPR)研究表明,杂多金属辅助因子选择性地与二氧发生反应,并可能通过形成瞬时酪氨酸自由基中间体和由此产生的杂多金属 Mn3+/Fe3+ 簇来启动 pABA 的组装。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信