Magnetic field controlled surface localization of ferromagnetic resonance modes in 3D nanostructures

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mateusz Gołębiewski , Krzysztof Szulc , Maciej Krawczyk
{"title":"Magnetic field controlled surface localization of ferromagnetic resonance modes in 3D nanostructures","authors":"Mateusz Gołębiewski ,&nbsp;Krzysztof Szulc ,&nbsp;Maciej Krawczyk","doi":"10.1016/j.actamat.2024.120499","DOIUrl":null,"url":null,"abstract":"<div><div>By extending the current understanding and use of magnonics beyond conventional planar systems, we demonstrate the surface localization of ferromagnetic resonance (FMR) modes through the design of complex three-dimensional nanostructures. Using micromagnetic simulations, we systematically investigate woodpile-like scaffolds and gyroids — periodic chiral entities characterized by their triple junctions. The study highlights the critical role of demagnetizing fields and exchange energy in determining the FMR responses of 3D nanosystems, especially the strongly asymmetric distribution of the spin-wave mode over the system’s height. Importantly, the top–bottom dynamic switching of the surface mode localization across the structures in response to changes in magnetic field orientation provides a new method for controlling magnetization dynamics. The results demonstrate the critical role of the geometric features in dictating the dynamic magnetic behavior of three-dimensional nanostructures, paving the way for both experimental exploration and practical advances in 3D magnonics.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"283 ","pages":"Article 120499"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645424008486","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

By extending the current understanding and use of magnonics beyond conventional planar systems, we demonstrate the surface localization of ferromagnetic resonance (FMR) modes through the design of complex three-dimensional nanostructures. Using micromagnetic simulations, we systematically investigate woodpile-like scaffolds and gyroids — periodic chiral entities characterized by their triple junctions. The study highlights the critical role of demagnetizing fields and exchange energy in determining the FMR responses of 3D nanosystems, especially the strongly asymmetric distribution of the spin-wave mode over the system’s height. Importantly, the top–bottom dynamic switching of the surface mode localization across the structures in response to changes in magnetic field orientation provides a new method for controlling magnetization dynamics. The results demonstrate the critical role of the geometric features in dictating the dynamic magnetic behavior of three-dimensional nanostructures, paving the way for both experimental exploration and practical advances in 3D magnonics.

Abstract Image

Abstract Image

三维纳米结构中铁磁共振模式的磁场控制表面定位
我们通过设计复杂的三维纳米结构,展示了铁磁共振(FMR)模式的表面定位,从而将目前对磁学的理解和应用扩展到传统的平面系统之外。利用微磁模拟,我们系统地研究了木桩状支架和陀螺--以三重连接为特征的周期性手性实体。研究强调了去磁场和交换能在决定三维纳米系统的调频响应中的关键作用,尤其是自旋波模式在系统高度上的强烈非对称分布。重要的是,随着磁场方向的变化,整个结构的表面模式定位会从上到下发生动态切换,这为控制磁化动态提供了一种新方法。这些结果证明了几何特征在决定三维纳米结构动态磁行为中的关键作用,为三维磁学的实验探索和实际进展铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信