{"title":"Special Joyce structures and hyperkähler metrics","authors":"Iván Tulli","doi":"10.1007/s11005-024-01871-3","DOIUrl":null,"url":null,"abstract":"<div><p>Joyce structures were introduced by T. Bridgeland in the context of the space of stability conditions of a three-dimensional Calabi–Yau category and its associated Donaldson–Thomas invariants. In subsequent work, T. Bridgeland and I. Strachan showed that Joyce structures satisfying a certain non-degeneracy condition encode a complex hyperkähler structure on the tangent bundle of the base of the Joyce structure. In this work we give a definition of an analogous structure over an affine special Kähler (ASK) manifold, which we call a special Joyce structure. Furthermore, we show that it encodes a real hyperkähler (HK) structure on the tangent bundle of the ASK manifold, possibly of indefinite signature. Particular examples include the semi-flat HK metric associated to an ASK manifold (also known as the rigid c-map metric) and the HK metrics associated to certain uncoupled variations of BPS structures over the ASK manifold. Finally, we relate the HK metrics coming from special Joyce structures to HK metrics on the total space of algebraic integrable systems.\n</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"114 6","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11005-024-01871-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-024-01871-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Joyce structures were introduced by T. Bridgeland in the context of the space of stability conditions of a three-dimensional Calabi–Yau category and its associated Donaldson–Thomas invariants. In subsequent work, T. Bridgeland and I. Strachan showed that Joyce structures satisfying a certain non-degeneracy condition encode a complex hyperkähler structure on the tangent bundle of the base of the Joyce structure. In this work we give a definition of an analogous structure over an affine special Kähler (ASK) manifold, which we call a special Joyce structure. Furthermore, we show that it encodes a real hyperkähler (HK) structure on the tangent bundle of the ASK manifold, possibly of indefinite signature. Particular examples include the semi-flat HK metric associated to an ASK manifold (also known as the rigid c-map metric) and the HK metrics associated to certain uncoupled variations of BPS structures over the ASK manifold. Finally, we relate the HK metrics coming from special Joyce structures to HK metrics on the total space of algebraic integrable systems.
期刊介绍:
The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.