Myung Soon Song , Yun Lu , Dominic Rando , Francis J. Vasko
{"title":"Statistical analyses of solution methods for the multiple-choice knapsack problem with setups: Implications for OR practitioners","authors":"Myung Soon Song , Yun Lu , Dominic Rando , Francis J. Vasko","doi":"10.1016/j.eswa.2024.125622","DOIUrl":null,"url":null,"abstract":"<div><div>An interesting extension of the classic Knapsack Problem (KP) is the Multiple-Choice Knapsack Problem with Setups (MCKS) which is focused on solving practical applications that involve both multiple periods and setups. Sophisticated solution methods for the MCKS that are presented in the operations research (OR) literature are not readily available for use by OR practitioners. Using MCKS test instances that appear in the literature, we demonstrate that the general-purpose integer programming software Gurobi sometimes used in an iterative manner can efficiently solve these MCKS instances using all default parameter values on a standard PC. It is shown both empirically and statistically that these Gurobi solutions are competitive with solution approaches from the literature. Hence, our approach using Gurobi is both easy for the OR practitioner to use and gives results competitive with the best specialized MCKS solution methods in the literature without the need to generate algorithm-specific code. Furthermore, this paper presents significant concerns regarding the solutions stated in the literature by the approximate solution method that reports the best results on 120 MCKS test instances. Specifically, 26% of this method’s solutions violate Gurobi upper bounds and an additional 33% of its solutions, on average, exceed the known guaranteed optimums by a value of 12,510.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"262 ","pages":"Article 125622"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417424024898","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
An interesting extension of the classic Knapsack Problem (KP) is the Multiple-Choice Knapsack Problem with Setups (MCKS) which is focused on solving practical applications that involve both multiple periods and setups. Sophisticated solution methods for the MCKS that are presented in the operations research (OR) literature are not readily available for use by OR practitioners. Using MCKS test instances that appear in the literature, we demonstrate that the general-purpose integer programming software Gurobi sometimes used in an iterative manner can efficiently solve these MCKS instances using all default parameter values on a standard PC. It is shown both empirically and statistically that these Gurobi solutions are competitive with solution approaches from the literature. Hence, our approach using Gurobi is both easy for the OR practitioner to use and gives results competitive with the best specialized MCKS solution methods in the literature without the need to generate algorithm-specific code. Furthermore, this paper presents significant concerns regarding the solutions stated in the literature by the approximate solution method that reports the best results on 120 MCKS test instances. Specifically, 26% of this method’s solutions violate Gurobi upper bounds and an additional 33% of its solutions, on average, exceed the known guaranteed optimums by a value of 12,510.
期刊介绍:
Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.