Machine learning private equity returns

Q1 Mathematics
Christian Tausch, Marcus Pietz
{"title":"Machine learning private equity returns","authors":"Christian Tausch,&nbsp;Marcus Pietz","doi":"10.1016/j.jfds.2024.100141","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we use two machine learning techniques to learn the aggregated return time series of complete private capital fund segments. First, we propose Stochastic Discount Factor (SDF) model combination to determine the public factor exposure of private equity. Here, we describe our theoretical motivation to favor model combination over model selection. This entails that we apply simple coefficient averaging to obtain multivariate SDF models that mimic the factor exposure of all major private capital fund types. As a second step, we suggest componentwise <em>L</em><sub>2</sub> boosting to estimate the error-term time series associated with our factor models. The simple addition of the public factor model returns and the error terms then yields the total return time series. These return time series can be applied for proper integrated public and private risk management or benchmarking.</div></div>","PeriodicalId":36340,"journal":{"name":"Journal of Finance and Data Science","volume":"10 ","pages":"Article 100141"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Finance and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405918824000266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we use two machine learning techniques to learn the aggregated return time series of complete private capital fund segments. First, we propose Stochastic Discount Factor (SDF) model combination to determine the public factor exposure of private equity. Here, we describe our theoretical motivation to favor model combination over model selection. This entails that we apply simple coefficient averaging to obtain multivariate SDF models that mimic the factor exposure of all major private capital fund types. As a second step, we suggest componentwise L2 boosting to estimate the error-term time series associated with our factor models. The simple addition of the public factor model returns and the error terms then yields the total return time series. These return time series can be applied for proper integrated public and private risk management or benchmarking.
机器学习私募股权投资回报
在本文中,我们使用两种机器学习技术来学习完整的私募基金细分市场的总回报时间序列。首先,我们提出了随机贴现因子(SDF)模型组合来确定私募基金的公共因子风险敞口。在此,我们将介绍我们倾向于模型组合而非模型选择的理论动机。这就要求我们运用简单的系数平均法获得多变量 SDF 模型,以模拟所有主要私募基金类型的因子风险敞口。第二步,我们建议采用分量二级提升法来估计与因子模型相关的误差期时间序列。将公共因子模型收益和误差项简单相加,就能得到总收益时间序列。这些收益时间序列可用于适当的公共和私人综合风险管理或基准测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Finance and Data Science
Journal of Finance and Data Science Mathematics-Statistics and Probability
CiteScore
3.90
自引率
0.00%
发文量
15
审稿时长
30 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信