Improved computation of polynomial roots over number fields when using complex embeddings

Andrea Lesavourey , Thomas Plantard , Willy Susilo
{"title":"Improved computation of polynomial roots over number fields when using complex embeddings","authors":"Andrea Lesavourey ,&nbsp;Thomas Plantard ,&nbsp;Willy Susilo","doi":"10.1016/j.jaca.2024.100026","DOIUrl":null,"url":null,"abstract":"<div><div>We explore a fairly generic method to compute roots of polynomials over number fields through complex embeddings. Our main contribution is to show how to use a structure of a relative extension to decode in a subfield. Additionally we describe several heuristic options to improve practical efficiency. We provide experimental data from our implementation and compare our methods to the state of the art algorithm implemented in <span>Pari/Gp</span>.</div></div>","PeriodicalId":100767,"journal":{"name":"Journal of Computational Algebra","volume":"12 ","pages":"Article 100026"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Algebra","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772827724000160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We explore a fairly generic method to compute roots of polynomials over number fields through complex embeddings. Our main contribution is to show how to use a structure of a relative extension to decode in a subfield. Additionally we describe several heuristic options to improve practical efficiency. We provide experimental data from our implementation and compare our methods to the state of the art algorithm implemented in Pari/Gp.
使用复嵌入时改进数域上多项式根的计算
我们探索了一种相当通用的方法,通过复嵌入计算数域上多项式的根。我们的主要贡献在于展示了如何利用相对扩展结构在子字段中解码。此外,我们还介绍了几种启发式方案,以提高实际效率。我们提供了实现过程中的实验数据,并将我们的方法与在 Pari/Gp 中实现的最先进算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信