Theoretical calculation and analysis of electromagnetic performance of high temperature superconducting electric flywheel energy storage system

IF 1.3 3区 物理与天体物理 Q4 PHYSICS, APPLIED
{"title":"Theoretical calculation and analysis of electromagnetic performance of high temperature superconducting electric flywheel energy storage system","authors":"","doi":"10.1016/j.physc.2024.1354599","DOIUrl":null,"url":null,"abstract":"<div><div>This article presents a high-temperature superconducting flywheel energy storage system with zero-flux coils. This system features a straightforward structure, substantial energy storage capacity, and the capability to self-stabilize suspension and guidance in both axial and radial directions. The article provides an introduction to the system's structure and principle. Firstly, it analyzes the model mechanism and dynamic electromagnetic performance of the 8-shaped coil without cross connection structure while validating its accuracy through comparison with simulation results. Subsequently, it examines the electromagnetic performance of the cross-connected structure, demonstrating its superior performance compared to that of the non-cross-connected structure. These research findings serve as a valuable reference for designing high-temperature superconducting electric flywheel energy storage systems.</div></div>","PeriodicalId":20159,"journal":{"name":"Physica C-superconductivity and Its Applications","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica C-superconductivity and Its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921453424001631","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a high-temperature superconducting flywheel energy storage system with zero-flux coils. This system features a straightforward structure, substantial energy storage capacity, and the capability to self-stabilize suspension and guidance in both axial and radial directions. The article provides an introduction to the system's structure and principle. Firstly, it analyzes the model mechanism and dynamic electromagnetic performance of the 8-shaped coil without cross connection structure while validating its accuracy through comparison with simulation results. Subsequently, it examines the electromagnetic performance of the cross-connected structure, demonstrating its superior performance compared to that of the non-cross-connected structure. These research findings serve as a valuable reference for designing high-temperature superconducting electric flywheel energy storage systems.
高温超导电动飞轮储能系统电磁性能的理论计算与分析
本文介绍了一种带有零磁通线圈的高温超导飞轮储能系统。该系统结构简单,储能容量大,并具有轴向和径向自稳定悬浮和制导能力。文章介绍了该系统的结构和原理。首先,分析了无交叉连接结构的 8 形线圈的模型机理和动态电磁性能,并通过与仿真结果的对比验证了其准确性。随后,研究了交叉连接结构的电磁性能,证明其性能优于无交叉连接结构。这些研究成果对设计高温超导电动飞轮储能系统具有重要的参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
11.80%
发文量
102
审稿时长
66 days
期刊介绍: Physica C (Superconductivity and its Applications) publishes peer-reviewed papers on novel developments in the field of superconductivity. Topics include discovery of new superconducting materials and elucidation of their mechanisms, physics of vortex matter, enhancement of critical properties of superconductors, identification of novel properties and processing methods that improve their performance and promote new routes to applications of superconductivity. The main goal of the journal is to publish: 1. Papers that substantially increase the understanding of the fundamental aspects and mechanisms of superconductivity and vortex matter through theoretical and experimental methods. 2. Papers that report on novel physical properties and processing of materials that substantially enhance their critical performance. 3. Papers that promote new or improved routes to applications of superconductivity and/or superconducting materials, and proof-of-concept novel proto-type superconducting devices. The editors of the journal will select papers that are well written and based on thorough research that provide truly novel insights.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信