Enhancing aspect category detection in imbalanced online reviews: An integrated approach using Select-SMOTE and LightGBM

Chuanjun Zhao , Zhihe Yan , Xuzhuang Sun , Meiling Wu
{"title":"Enhancing aspect category detection in imbalanced online reviews: An integrated approach using Select-SMOTE and LightGBM","authors":"Chuanjun Zhao ,&nbsp;Zhihe Yan ,&nbsp;Xuzhuang Sun ,&nbsp;Meiling Wu","doi":"10.1016/j.ijin.2024.10.002","DOIUrl":null,"url":null,"abstract":"<div><div>Aspect category detection (ACD) is a pivotal subtask within the field of sentiment analysis in natural language processing, aiming to identify implicit aspect category information in online review texts. In real-world scenarios of online review category detection tasks, data imbalance often arises, leading to skewed distributions among distinct review categories. This phenomenon poses substantial challenges for accurately recognizing minority categories through modeling. To address this, we propose a method for detecting imbalanced aspect categories by combining the selective synthetic over-sampling (Select-SMOTE) algorithm with the light gradient boosting machine (LightGBM). Our approach commences with text data representation through features, followed by a strategy involving joint sample partitioning and boundary optimization within the feature space to generate minority class samples. This partitioning strategy aligns generated data more closely with the original distribution, while the boundary optimization module enhances classification performance by eliminating samples near boundaries. Subsequently, the balanced dataset is input to the LGB model, enabling the extraction of aspect category information through parameter optimization and class weight assignment. Finally, our method is evaluated using the SemEval and SentiHood datasets and compared with prevailing sampling methods and classification models. Empirical results manifestly demonstrate the method’s superiority across diverse metrics, reflecting robustness and effective mitigation of imbalanced data challenges in ACD.</div></div>","PeriodicalId":100702,"journal":{"name":"International Journal of Intelligent Networks","volume":"5 ","pages":"Pages 364-372"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Networks","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666603024000344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aspect category detection (ACD) is a pivotal subtask within the field of sentiment analysis in natural language processing, aiming to identify implicit aspect category information in online review texts. In real-world scenarios of online review category detection tasks, data imbalance often arises, leading to skewed distributions among distinct review categories. This phenomenon poses substantial challenges for accurately recognizing minority categories through modeling. To address this, we propose a method for detecting imbalanced aspect categories by combining the selective synthetic over-sampling (Select-SMOTE) algorithm with the light gradient boosting machine (LightGBM). Our approach commences with text data representation through features, followed by a strategy involving joint sample partitioning and boundary optimization within the feature space to generate minority class samples. This partitioning strategy aligns generated data more closely with the original distribution, while the boundary optimization module enhances classification performance by eliminating samples near boundaries. Subsequently, the balanced dataset is input to the LGB model, enabling the extraction of aspect category information through parameter optimization and class weight assignment. Finally, our method is evaluated using the SemEval and SentiHood datasets and compared with prevailing sampling methods and classification models. Empirical results manifestly demonstrate the method’s superiority across diverse metrics, reflecting robustness and effective mitigation of imbalanced data challenges in ACD.
增强不平衡在线评论中的方面类别检测:使用 Select-SMOTE 和 LightGBM 的综合方法
方面类别检测(ACD)是自然语言处理中情感分析领域的一个重要子任务,旨在识别在线评论文本中隐含的方面类别信息。在现实世界的在线评论类别检测任务中,经常会出现数据不平衡的情况,导致不同评论类别之间的分布出现偏差。这种现象给通过建模准确识别少数类别带来了巨大挑战。为了解决这个问题,我们提出了一种结合选择性合成过度采样(Select-SMOTE)算法和光梯度提升机(LightGBM)的方法来检测不平衡的方面类别。我们的方法首先通过特征来表示文本数据,然后在特征空间内采用联合样本划分和边界优化策略来生成少数类别样本。这种分区策略使生成的数据更接近原始分布,而边界优化模块则通过消除边界附近的样本来提高分类性能。随后,将平衡数据集输入 LGB 模型,通过参数优化和类权重分配提取方面类别信息。最后,我们使用 SemEval 和 SentiHood 数据集对我们的方法进行了评估,并与现有的抽样方法和分类模型进行了比较。实证结果明显证明了该方法在各种指标上的优越性,反映了该方法的鲁棒性,并有效缓解了 ACD 中不平衡数据带来的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信