Numerical assessment of black powder removal from natural gas using magnetophoresis

IF 2.5 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ali Mahmoudi, Majid Mesbah
{"title":"Numerical assessment of black powder removal from natural gas using magnetophoresis","authors":"Ali Mahmoudi,&nbsp;Majid Mesbah","doi":"10.1016/j.jmmm.2024.172616","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses the persistent issue of black powder—solid suspended particles in natural gas streams—that can cause significant damage to gas industry equipment. Despite existing purification processes, black powder remains a challenge due to the limitations of conventional particle removal techniques. To overcome these drawbacks, this study proposes a novel magnetic filter that offers superior efficiency in capturing even submicron particles, significantly reducing maintenance costs and addressing the longstanding problem of black powder accumulation. The properties of black powder and existing separation methods in the natural gas industry are explored, and the performance of the magnetic filter is evaluated through comprehensive numerical analysis using the Discrete Phase Model (DPM). Results demonstrate the filter’s capability to efficiently capture particles as small as 5 µm, with an impressive removal efficiency of 92% for particles as small as 1 µm. This study provides valuable insights into addressing the persistent issue of black powder in natural gas streams and presents a promising solution for its efficient removal, ensuring the long-term integrity and durability of equipment used in natural gas transmission systems.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"611 ","pages":"Article 172616"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetism and Magnetic Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304885324009077","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the persistent issue of black powder—solid suspended particles in natural gas streams—that can cause significant damage to gas industry equipment. Despite existing purification processes, black powder remains a challenge due to the limitations of conventional particle removal techniques. To overcome these drawbacks, this study proposes a novel magnetic filter that offers superior efficiency in capturing even submicron particles, significantly reducing maintenance costs and addressing the longstanding problem of black powder accumulation. The properties of black powder and existing separation methods in the natural gas industry are explored, and the performance of the magnetic filter is evaluated through comprehensive numerical analysis using the Discrete Phase Model (DPM). Results demonstrate the filter’s capability to efficiently capture particles as small as 5 µm, with an impressive removal efficiency of 92% for particles as small as 1 µm. This study provides valuable insights into addressing the persistent issue of black powder in natural gas streams and presents a promising solution for its efficient removal, ensuring the long-term integrity and durability of equipment used in natural gas transmission systems.
利用磁流体从天然气中去除黑火药的数值评估
本文探讨了天然气流中长期存在的黑粉问题,即天然气流中的固体悬浮颗粒会对天然气工业设备造成严重损害。尽管已有净化工艺,但由于传统颗粒去除技术的局限性,黑粉仍然是一个挑战。为了克服这些弊端,本研究提出了一种新型磁性过滤器,它甚至能高效捕捉亚微米级颗粒,大大降低了维护成本,并解决了长期存在的黑粉积聚问题。本研究探讨了黑粉的特性和天然气行业现有的分离方法,并通过使用离散相模型(DPM)进行综合数值分析,评估了磁过滤器的性能。结果表明,该过滤器能够有效捕获小至 5 微米的颗粒,对于小至 1 微米的颗粒,其去除效率高达 92%,令人印象深刻。这项研究为解决天然气气流中长期存在的黑粉问题提供了宝贵的见解,并为高效去除黑粉提出了一个前景广阔的解决方案,从而确保天然气传输系统所用设备的长期完整性和耐用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Magnetism and Magnetic Materials
Journal of Magnetism and Magnetic Materials 物理-材料科学:综合
CiteScore
5.30
自引率
11.10%
发文量
1149
审稿时长
59 days
期刊介绍: The Journal of Magnetism and Magnetic Materials provides an important forum for the disclosure and discussion of original contributions covering the whole spectrum of topics, from basic magnetism to the technology and applications of magnetic materials. The journal encourages greater interaction between the basic and applied sub-disciplines of magnetism with comprehensive review articles, in addition to full-length contributions. In addition, other categories of contributions are welcome, including Critical Focused issues, Current Perspectives and Outreach to the General Public. Main Categories: Full-length articles: Technically original research documents that report results of value to the communities that comprise the journal audience. The link between chemical, structural and microstructural properties on the one hand and magnetic properties on the other hand are encouraged. In addition to general topics covering all areas of magnetism and magnetic materials, the full-length articles also include three sub-sections, focusing on Nanomagnetism, Spintronics and Applications. The sub-section on Nanomagnetism contains articles on magnetic nanoparticles, nanowires, thin films, 2D materials and other nanoscale magnetic materials and their applications. The sub-section on Spintronics contains articles on magnetoresistance, magnetoimpedance, magneto-optical phenomena, Micro-Electro-Mechanical Systems (MEMS), and other topics related to spin current control and magneto-transport phenomena. The sub-section on Applications display papers that focus on applications of magnetic materials. The applications need to show a connection to magnetism. Review articles: Review articles organize, clarify, and summarize existing major works in the areas covered by the Journal and provide comprehensive citations to the full spectrum of relevant literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信