Evaluation of boron evaporation kinetics from stainless-steel–B4C alloy during steam oxidation at high temperatures

IF 2.8 2区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kosuke Inoue , Ayumi Itoh , Masato Mizokami , Mutsumi Hirai
{"title":"Evaluation of boron evaporation kinetics from stainless-steel–B4C alloy during steam oxidation at high temperatures","authors":"Kosuke Inoue ,&nbsp;Ayumi Itoh ,&nbsp;Masato Mizokami ,&nbsp;Mutsumi Hirai","doi":"10.1016/j.jnucmat.2024.155456","DOIUrl":null,"url":null,"abstract":"<div><div>To understand the core degradation process at the Fukushima Daiichi Nuclear Power Station, the oxidation of boron carbide–stainless steel alloy under steam starvation condition was studied at temperatures in the range of 1,288–1,573 K. Low steam supply led to swift Fe–O layer formation, embedding Fe–B–O and Fe–Cr–O, and boron evaporation mainly as oxides was observed through the Fe–B–O phase precipitated in the Fe–O layer. The rate constant of boron evaporation <em>k</em><sub>B</sub> was derived from the measured data as <em>k</em><sub>B</sub> = 0.0157 <em>exp</em> (–79.8 × 10<sup>3</sup>/<em>RT</em>) for <em>T</em> ≥ 1,423 K and <em>k</em><sub>B</sub> = 8.69 × 10<sup>−5</sup> <em>exp</em> (–44.4 × 10<sup>3</sup>/<em>RT</em>) for <em>T</em> &lt; 1,423 K where <em>R</em> and <em>T</em> are the gas constant and temperature, respectively. The obtained constant was comparable to the reaction rate of B<sub>4</sub>C oxidation. In addition, a test with an even more decreased steam supply was conducted to examine the impact of steam quantity on the boron evaporation kinetics. Consequently, it was confirmed that decreasing the oxygen supply resulted in a slowdown of outer Fe–O layer formation, which enhances the outwards diffusion of B and allows greater evaporation of B oxides.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"603 ","pages":"Article 155456"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022311524005567","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To understand the core degradation process at the Fukushima Daiichi Nuclear Power Station, the oxidation of boron carbide–stainless steel alloy under steam starvation condition was studied at temperatures in the range of 1,288–1,573 K. Low steam supply led to swift Fe–O layer formation, embedding Fe–B–O and Fe–Cr–O, and boron evaporation mainly as oxides was observed through the Fe–B–O phase precipitated in the Fe–O layer. The rate constant of boron evaporation kB was derived from the measured data as kB = 0.0157 exp (–79.8 × 103/RT) for T ≥ 1,423 K and kB = 8.69 × 10−5 exp (–44.4 × 103/RT) for T < 1,423 K where R and T are the gas constant and temperature, respectively. The obtained constant was comparable to the reaction rate of B4C oxidation. In addition, a test with an even more decreased steam supply was conducted to examine the impact of steam quantity on the boron evaporation kinetics. Consequently, it was confirmed that decreasing the oxygen supply resulted in a slowdown of outer Fe–O layer formation, which enhances the outwards diffusion of B and allows greater evaporation of B oxides.
高温蒸汽氧化过程中不锈钢-B4C 合金硼蒸发动力学评估
为了解福岛第一核电站堆芯降解过程,我们在 1288-1,573 K 的温度范围内研究了碳化硼-不锈钢合金在蒸汽饥饿条件下的氧化过程。低蒸汽供应导致 Fe-O 层迅速形成,嵌入了 Fe-B-O 和 Fe-Cr-O,并通过 Fe-O 层中析出的 Fe-B-O 相观察到硼主要以氧化物的形式蒸发。根据测量数据得出硼蒸发的速率常数 kB:T ≥ 1,423 K 时,kB = 0.0157 exp (-79.8 × 103/RT);T < 1,423 K 时,kB = 8.69 × 10-5 exp (-44.4 × 103/RT),其中 R 和 T 分别为气体常数和温度。所得常数与 B4C 氧化反应速率相当。此外,还进行了一次蒸汽供应量更小的试验,以检验蒸汽量对硼蒸发动力学的影响。结果证实,减少供氧量会导致外层 Fe-O 层的形成速度减慢,从而加强硼的向外扩散,使硼氧化物的蒸发量增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nuclear Materials
Journal of Nuclear Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
25.80%
发文量
601
审稿时长
63 days
期刊介绍: The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome. The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example. Topics covered by JNM Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior. Materials aspects of the entire fuel cycle. Materials aspects of the actinides and their compounds. Performance of nuclear waste materials; materials aspects of the immobilization of wastes. Fusion reactor materials, including first walls, blankets, insulators and magnets. Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties. Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信