Dilara Aktas;Beyza E. Ortlek;Meltem Civas;Elham Baradari;Ahmet B. Kilic;Fatih E. Bilgen;Ayse S. Okcu;Melanie Whitfield;Oktay Cetinkaya;Ozgur B. Akan
{"title":"Odor-Based Molecular Communications: State-of-the-Art, Vision, Challenges, and Frontier Directions","authors":"Dilara Aktas;Beyza E. Ortlek;Meltem Civas;Elham Baradari;Ahmet B. Kilic;Fatih E. Bilgen;Ayse S. Okcu;Melanie Whitfield;Oktay Cetinkaya;Ozgur B. Akan","doi":"10.1109/COMST.2024.3487472","DOIUrl":null,"url":null,"abstract":"Humankind mimics the processes and strategies that nature has perfected and uses them as a model to address its problems. This has led to a new communication technology, molecular communication (MC), using molecules to encode, transmit, and receive information. Despite extensive research, an innate MC method found abundantly in nature-olfactory or odor communication-has not been thoroughly studied using information and communication technologies (ICT). Existing studies focus on digitizing this sense and developing actuators without examining odor-based information coding and MC principles, significantly limiting its application potential. Hence, cross-disciplinary research is needed to uncover the fundamentals of this unconventional communication modality from an ICT perspective. The ways of natural odor MC in nature need to be anatomized and engineered for end-to-end communication among humans and human-made things to enable several multi-sense augmented reality technologies reinforced with olfactory senses for novel applications and solutions in the Internet of Everything (IoE). This paper introduces odor-based molecular communication (OMC) and thoroughly examines olfactory systems, exploring odor communication in nature, including odor information, channels, reception, spatial perception, and cognitive functions. Additionally, a comprehensive comparison of various communication systems sets the foundation for further investigation. By highlighting OMC’s unique characteristics, advantages, and potential applications, this paper lays the groundwork for modeling end-to-end OMC channels, designing OMC transmitters and receivers, and developing innovative OMC techniques.","PeriodicalId":55029,"journal":{"name":"IEEE Communications Surveys and Tutorials","volume":"27 4","pages":"2658-2692"},"PeriodicalIF":34.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Surveys and Tutorials","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10737091/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Humankind mimics the processes and strategies that nature has perfected and uses them as a model to address its problems. This has led to a new communication technology, molecular communication (MC), using molecules to encode, transmit, and receive information. Despite extensive research, an innate MC method found abundantly in nature-olfactory or odor communication-has not been thoroughly studied using information and communication technologies (ICT). Existing studies focus on digitizing this sense and developing actuators without examining odor-based information coding and MC principles, significantly limiting its application potential. Hence, cross-disciplinary research is needed to uncover the fundamentals of this unconventional communication modality from an ICT perspective. The ways of natural odor MC in nature need to be anatomized and engineered for end-to-end communication among humans and human-made things to enable several multi-sense augmented reality technologies reinforced with olfactory senses for novel applications and solutions in the Internet of Everything (IoE). This paper introduces odor-based molecular communication (OMC) and thoroughly examines olfactory systems, exploring odor communication in nature, including odor information, channels, reception, spatial perception, and cognitive functions. Additionally, a comprehensive comparison of various communication systems sets the foundation for further investigation. By highlighting OMC’s unique characteristics, advantages, and potential applications, this paper lays the groundwork for modeling end-to-end OMC channels, designing OMC transmitters and receivers, and developing innovative OMC techniques.
期刊介绍:
IEEE Communications Surveys & Tutorials is an online journal published by the IEEE Communications Society for tutorials and surveys covering all aspects of the communications field. Telecommunications technology is progressing at a rapid pace, and the IEEE Communications Society is committed to providing researchers and other professionals the information and tools to stay abreast. IEEE Communications Surveys and Tutorials focuses on integrating and adding understanding to the existing literature on communications, putting results in context. Whether searching for in-depth information about a familiar area or an introduction into a new area, IEEE Communications Surveys & Tutorials aims to be the premier source of peer-reviewed, comprehensive tutorials and surveys, and pointers to further sources. IEEE Communications Surveys & Tutorials publishes only articles exclusively written for IEEE Communications Surveys & Tutorials and go through a rigorous review process before their publication in the quarterly issues.
A tutorial article in the IEEE Communications Surveys & Tutorials should be designed to help the reader to become familiar with and learn something specific about a chosen topic. In contrast, the term survey, as applied here, is defined to mean a survey of the literature. A survey article in IEEE Communications Surveys & Tutorials should provide a comprehensive review of developments in a selected area, covering its development from its inception to its current state and beyond, and illustrating its development through liberal citations from the literature. Both tutorials and surveys should be tutorial in nature and should be written in a style comprehensible to readers outside the specialty of the article.