Influence of Crystallinity on the Mechanochemical Degradation of Poly(lactide) with Ball-Mill Grinding

IF 5.1 1区 化学 Q1 POLYMER SCIENCE
Somin Cha, Jeung Gon Kim, Gregory I. Peterson
{"title":"Influence of Crystallinity on the Mechanochemical Degradation of Poly(lactide) with Ball-Mill Grinding","authors":"Somin Cha, Jeung Gon Kim, Gregory I. Peterson","doi":"10.1021/acs.macromol.4c02156","DOIUrl":null,"url":null,"abstract":"Polymers can undergo mechanochemical chain scission during ball-mill grinding (BMG). Various milling and polymer parameters were known to influence chain scission, but the influence of crystallinity was not fully explored. In this report, using ring-opening polymerization, we prepared a library of poly(lactide)s (PLAs) with varying molecular weight and varying crystallinity by changing the stereochemistry of monomers. Semicrystalline PLLA and PDLA (from <span>l</span>- and <span>d</span>-lactide, respectively), amorphous PLDLA (from a copolymerization of <span>l</span>- and <span>d</span>-lactide), and a stereocomplex between PLLA and PDLA were subjected to degradation experiments to assess their degradation kinetics. We found degradation rate constant trends that suggested that the crystallinity had a negligible influence on degradation rates. We attributed this behavior to the fast amorphization of the semicrystalline PLAs. This work provides important insight into how other polymer transformations that occur during ball milling can influence chain scission.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"45 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.4c02156","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Polymers can undergo mechanochemical chain scission during ball-mill grinding (BMG). Various milling and polymer parameters were known to influence chain scission, but the influence of crystallinity was not fully explored. In this report, using ring-opening polymerization, we prepared a library of poly(lactide)s (PLAs) with varying molecular weight and varying crystallinity by changing the stereochemistry of monomers. Semicrystalline PLLA and PDLA (from l- and d-lactide, respectively), amorphous PLDLA (from a copolymerization of l- and d-lactide), and a stereocomplex between PLLA and PDLA were subjected to degradation experiments to assess their degradation kinetics. We found degradation rate constant trends that suggested that the crystallinity had a negligible influence on degradation rates. We attributed this behavior to the fast amorphization of the semicrystalline PLAs. This work provides important insight into how other polymer transformations that occur during ball milling can influence chain scission.

Abstract Image

结晶度对球磨法聚乳酸机械化学降解的影响
聚合物在球磨研磨(BMG)过程中会发生机械化学链断裂。已知各种研磨和聚合物参数会影响链的断裂,但结晶度的影响尚未得到充分探讨。在本报告中,我们采用开环聚合法,通过改变单体的立体化学结构,制备了不同分子量和不同结晶度的聚乳酸(PLA)库。我们对半结晶聚乳酸(PLLA)和聚对苯二甲酸(PDLA)(分别来自 l-和 d-内酰胺)、无定形聚乳酸(PLDLA)(来自 l-和 d-内酰胺的共聚物)以及聚乳酸和聚对苯二甲酸的立体共聚物进行了降解实验,以评估它们的降解动力学。我们发现降解速率常数趋势表明,结晶度对降解速率的影响微乎其微。我们将这种行为归因于半结晶聚乳酸的快速非晶化。这项工作为我们深入了解球磨过程中发生的其他聚合物转化如何影响链的断裂提供了重要的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信