{"title":"Enhanced Entanglement Density and Its Implication on Chain Diffusion Dynamics at the Air/Polyethylene Melt Interface","authors":"Natsumi Kyoda, Tatsuya Ishiyama","doi":"10.1021/acs.macromol.4c01588","DOIUrl":null,"url":null,"abstract":"All-atom molecular dynamics (MD) simulations at the air/polyethylene (PE) melt interface are performed to investigate the entanglement of polymer chains specific to the interfacial region. Before analyzing the entanglement, certain properties of the PE melt such as density, melting point, and glass transition temperature are examined, and the present model accurately reproduces these properties. The MD simulations reveal an enhancement of kink (entanglement) density in the subsurface region of the PE melt. Additionally, it is observed that the enhanced entanglement density exhibits temperature dependence, decreasing as the temperature increases. The influence of the enhanced entanglement density on the diffusion dynamics (mean square displacement) of the polymer chains is examined in the time scale of several tens of nanoseconds. The results confirm that the chain dynamics at the interfacial region are affected by the interface-specific entanglement in the time scale of a reptation-like regime.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"104 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.4c01588","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
All-atom molecular dynamics (MD) simulations at the air/polyethylene (PE) melt interface are performed to investigate the entanglement of polymer chains specific to the interfacial region. Before analyzing the entanglement, certain properties of the PE melt such as density, melting point, and glass transition temperature are examined, and the present model accurately reproduces these properties. The MD simulations reveal an enhancement of kink (entanglement) density in the subsurface region of the PE melt. Additionally, it is observed that the enhanced entanglement density exhibits temperature dependence, decreasing as the temperature increases. The influence of the enhanced entanglement density on the diffusion dynamics (mean square displacement) of the polymer chains is examined in the time scale of several tens of nanoseconds. The results confirm that the chain dynamics at the interfacial region are affected by the interface-specific entanglement in the time scale of a reptation-like regime.
期刊介绍:
Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.