{"title":"GGA+U study the effects of strains on magnetism, elastic properties and electronic structures of Heusler alloy Pd2FeCu","authors":"Chengwei Lu, S.W. Fan","doi":"10.1016/j.ssc.2024.115727","DOIUrl":null,"url":null,"abstract":"<div><div>The effect of strains on electronic structures, elastic properties, magnetic properties and Curie temperature of Pd<sub>2</sub>FeCu are calculated by GGA + U method. The impact of strains on the magnetism of Pd<sub>2</sub>FeCu is evaluated. The magnetism without and with spin-orbit coupling (SOC) effect under diverse strain are examined. The results show that Pd<sub>2</sub>FeCu is a ferromagnetic metal with good ductility and mechanical stability. The SOC effect has a negligible impact on the atomic magnetic moment of Pd<sub>2</sub>FeCu. When the compressive and tensile strains are imposed, the ferromagnetic metal properties still keep, and the Curie temperature of Pd<sub>2</sub>FeCu is higher than room temperature. The ferromagnetism for Pd<sub>2</sub>FeCu is very robust with respect to the variation of the strain. And the Ruderman-Kittel-Kasuya-Yoshida (RKKY) type ferromagnetic interaction play a crucial role to determine the ferromagnetism. We expect this work could stimulate experimental study.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"394 ","pages":"Article 115727"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109824003041","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
The effect of strains on electronic structures, elastic properties, magnetic properties and Curie temperature of Pd2FeCu are calculated by GGA + U method. The impact of strains on the magnetism of Pd2FeCu is evaluated. The magnetism without and with spin-orbit coupling (SOC) effect under diverse strain are examined. The results show that Pd2FeCu is a ferromagnetic metal with good ductility and mechanical stability. The SOC effect has a negligible impact on the atomic magnetic moment of Pd2FeCu. When the compressive and tensile strains are imposed, the ferromagnetic metal properties still keep, and the Curie temperature of Pd2FeCu is higher than room temperature. The ferromagnetism for Pd2FeCu is very robust with respect to the variation of the strain. And the Ruderman-Kittel-Kasuya-Yoshida (RKKY) type ferromagnetic interaction play a crucial role to determine the ferromagnetism. We expect this work could stimulate experimental study.
期刊介绍:
Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged.
A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions.
The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.