Lower bounds of decay rates for the MHD micropolar equations

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Felipe W. Cruz , Lorena B.S. Freitas
{"title":"Lower bounds of decay rates for the MHD micropolar equations","authors":"Felipe W. Cruz ,&nbsp;Lorena B.S. Freitas","doi":"10.1016/j.chaos.2024.115619","DOIUrl":null,"url":null,"abstract":"<div><div>We derive lower bounds for the decay rates of solutions to the 3D equations describing the motion of a micropolar fluid under the influence of a magnetic field. To accomplish this, we establish a lower bound for the decay of the solution <span><math><mrow><mo>(</mo><mspace></mspace><mspace></mspace><mover><mrow><mi>u</mi></mrow><mo>¯</mo></mover><mo>,</mo><mover><mrow><mi>w</mi></mrow><mo>¯</mo></mover><mo>,</mo><mover><mrow><mi>b</mi></mrow><mo>¯</mo></mover><mspace></mspace><mspace></mspace><mo>)</mo></mrow></math></span> of the linearized system, as well as an upper bound for the difference <span><math><mrow><mo>(</mo><mspace></mspace><mspace></mspace><mi>u</mi><mo>−</mo><mover><mrow><mi>u</mi></mrow><mo>¯</mo></mover><mo>,</mo><mi>w</mi><mo>−</mo><mover><mrow><mi>w</mi></mrow><mo>¯</mo></mover><mo>,</mo><mi>b</mi><mo>−</mo><mover><mrow><mi>b</mi></mrow><mo>¯</mo></mover><mspace></mspace><mspace></mspace><mo>)</mo></mrow></math></span>, where <span><math><mrow><mo>(</mo><mspace></mspace><mspace></mspace><mi>u</mi><mo>,</mo><mi>w</mi><mo>,</mo><mi>b</mi><mspace></mspace><mspace></mspace><mo>)</mo></mrow></math></span> represents the solution of the full nonlinear system. More specifically, for a certain class of initial data, we prove that <span><math><mrow><mrow><mo>‖</mo></mrow><mspace></mspace><mspace></mspace><mi>u</mi><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mspace></mspace><msubsup><mrow><mspace></mspace><mrow><mo>‖</mo></mrow></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msubsup><mspace></mspace><mspace></mspace><mo>+</mo><mspace></mspace><mrow><mo>‖</mo></mrow><mspace></mspace><mspace></mspace><mi>w</mi><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mspace></mspace><msubsup><mrow><mspace></mspace><mrow><mo>‖</mo></mrow></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msubsup><mspace></mspace><mspace></mspace><mo>+</mo><mspace></mspace><mrow><mo>‖</mo></mrow><mspace></mspace><mspace></mspace><mi>b</mi><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mspace></mspace><msubsup><mrow><mspace></mspace><mrow><mo>‖</mo></mrow></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msubsup><mspace></mspace><mspace></mspace><mo>≥</mo><mspace></mspace><mspace></mspace><mi>C</mi><mspace></mspace><mspace></mspace><msup><mrow><mrow><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mspace></mspace><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mrow></math></span>, for all <span><math><mrow><mi>t</mi><mo>≥</mo><mn>0</mn></mrow></math></span>.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924011718","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We derive lower bounds for the decay rates of solutions to the 3D equations describing the motion of a micropolar fluid under the influence of a magnetic field. To accomplish this, we establish a lower bound for the decay of the solution (u¯,w¯,b¯) of the linearized system, as well as an upper bound for the difference (uu¯,ww¯,bb¯), where (u,w,b) represents the solution of the full nonlinear system. More specifically, for a certain class of initial data, we prove that u(,t)L2(R3)2+w(,t)L2(R3)2+b(,t)L2(R3)2C(t+1)32, for all t0.
MHD 微波方程的衰减率下限
我们推导出描述微极流体在磁场影响下运动的三维方程的解的衰减率下限。为此,我们建立了线性化系统解 (u¯,w¯,b¯) 的衰减下限,以及差分 (u-u¯,w-w¯,b-b¯) 的上限,其中 (u,w,b) 表示全非线性系统的解。更具体地说,对于某类初始数据,我们证明了 "u(⋅,t)‖L2(R3)2+"w(⋅,t)‖L2(R3)2+"b(⋅,t)‖L2(R3)2≥C(t+1)-32,对于所有 t≥0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信