Yinuo Wang , Chuandong Li , Hongjuan Wu , Hao Deng
{"title":"Stability of nonlinear delayed impulsive control systems via step-function method","authors":"Yinuo Wang , Chuandong Li , Hongjuan Wu , Hao Deng","doi":"10.1016/j.chaos.2024.115631","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, considering that the limited speed of information transfer may generate time delay, which can sometimes influence the stability of the system, but in reality time delay is pervasive, and sometimes can have a positive impact on system’s stability, so it is essential to think about its existence. The nonlinear systems under delayed impulsive control (IC) are investigated here, and we mainly utilize the multiple-spans step-function method to analyse the stability conditions of the considered systems, which can be counted as a generalization of the Lyapunov-like stability method and is less conservative compared with the existing traditional Lyapunov-like function method. Moreover, it is the first time that this method employed for the stability of systems with IC and time delay. Two examples of equidistant impulses of nonlinear autonomous system and non-equidistant impulses of linear time-varying system by using two-spans step-function method are presented to validate the utility of the presented approach, respectively. Besides, the Zeno behavior of autonomous system without time delay is provided and treated by the presented method, which can better manifest the extensive viability of the method compared with the Lyapunov-like function method.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924011834","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, considering that the limited speed of information transfer may generate time delay, which can sometimes influence the stability of the system, but in reality time delay is pervasive, and sometimes can have a positive impact on system’s stability, so it is essential to think about its existence. The nonlinear systems under delayed impulsive control (IC) are investigated here, and we mainly utilize the multiple-spans step-function method to analyse the stability conditions of the considered systems, which can be counted as a generalization of the Lyapunov-like stability method and is less conservative compared with the existing traditional Lyapunov-like function method. Moreover, it is the first time that this method employed for the stability of systems with IC and time delay. Two examples of equidistant impulses of nonlinear autonomous system and non-equidistant impulses of linear time-varying system by using two-spans step-function method are presented to validate the utility of the presented approach, respectively. Besides, the Zeno behavior of autonomous system without time delay is provided and treated by the presented method, which can better manifest the extensive viability of the method compared with the Lyapunov-like function method.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.