Generating digital chaotic systems of the simplest structure via a strongly connected graph inverse approach

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Qianxue Wang, Dongsheng Kuang, Simin Yu
{"title":"Generating digital chaotic systems of the simplest structure via a strongly connected graph inverse approach","authors":"Qianxue Wang,&nbsp;Dongsheng Kuang,&nbsp;Simin Yu","doi":"10.1016/j.chaos.2024.115655","DOIUrl":null,"url":null,"abstract":"<div><div>This paper designs the simplest <span><math><mi>m</mi></math></span>-dimensional (<span><math><mrow><mi>m</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mo>…</mo></mrow></math></span>) digital chaotic system using a strongly connected graph inverse approach. Compared to previous systems, this approach significantly simplifies the system structure while enhancing statistical performance. First, in the <span><math><mi>m</mi></math></span>-dimensional digital iterative system, we construct <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup></math></span>-state transition graph with bidirectional direct paths between any two states. Under the condition that the bitwise XOR result between any two states equals the combination of the current <span><math><mi>m</mi></math></span> unilateral infinite sequence outputs, we derive the corresponding simplest uncoupled <span><math><mi>m</mi></math></span>-dimensional iterative functions based on the inverse approach. Second, based on the simplest uncoupled <span><math><mi>m</mi></math></span>-dimensional iterative functions, we develop a cascaded closed-loop coupling approach to obtain the corresponding simplest fully coupled <span><math><mi>m</mi></math></span>-dimensional iterative functions, theoretically proving that they satisfy Devaney’s chaos definition. Compared to previous systems, this closed-loop coupling method not only simplifies the system structure, making it the simplest form among all fully coupled <span><math><mi>m</mi></math></span>-dimensional iterative functions, but also significantly improves statistical performance, as evidenced by passing both NIST and TestU01 tests. Finally, we validate the effectiveness and superiority of the simplest <span><math><mi>m</mi></math></span>-dimensional digital chaotic system through circuit design and FPGA simulation experiments.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924012074","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper designs the simplest m-dimensional (m=2,3,4,) digital chaotic system using a strongly connected graph inverse approach. Compared to previous systems, this approach significantly simplifies the system structure while enhancing statistical performance. First, in the m-dimensional digital iterative system, we construct 2m-state transition graph with bidirectional direct paths between any two states. Under the condition that the bitwise XOR result between any two states equals the combination of the current m unilateral infinite sequence outputs, we derive the corresponding simplest uncoupled m-dimensional iterative functions based on the inverse approach. Second, based on the simplest uncoupled m-dimensional iterative functions, we develop a cascaded closed-loop coupling approach to obtain the corresponding simplest fully coupled m-dimensional iterative functions, theoretically proving that they satisfy Devaney’s chaos definition. Compared to previous systems, this closed-loop coupling method not only simplifies the system structure, making it the simplest form among all fully coupled m-dimensional iterative functions, but also significantly improves statistical performance, as evidenced by passing both NIST and TestU01 tests. Finally, we validate the effectiveness and superiority of the simplest m-dimensional digital chaotic system through circuit design and FPGA simulation experiments.
通过强连接图反演法生成结构最简单的数字混沌系统
本文利用强连接图逆方法设计了最简单的 m 维(m=2,3,4,...)数字混沌系统。与以往的系统相比,这种方法大大简化了系统结构,同时提高了统计性能。首先,在 m 维数字迭代系统中,我们构建了 2m 状态转换图,任意两个状态之间都有双向直接路径。在任意两个状态之间的比特XOR结果等于当前m个单边无穷序列输出组合的条件下,我们基于逆方法推导出相应的最简单的非耦合m维迭代函数。其次,在最简单的非耦合 m 维迭代函数的基础上,我们开发了一种级联闭环耦合方法,得到了相应的最简单的完全耦合 m 维迭代函数,并从理论上证明了它们满足 Devaney 的混沌定义。与以前的系统相比,这种闭环耦合方法不仅简化了系统结构,使其成为所有全耦合 m 维迭代函数中最简单的形式,而且显著提高了统计性能,通过 NIST 和 TestU01 测试就是证明。最后,我们通过电路设计和 FPGA 仿真实验验证了最简单 m 维数字混沌系统的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信