Strong reducibilities and set theory

IF 0.6 2区 数学 Q2 LOGIC
Noah Schweber
{"title":"Strong reducibilities and set theory","authors":"Noah Schweber","doi":"10.1016/j.apal.2024.103522","DOIUrl":null,"url":null,"abstract":"<div><div>We study Medvedev reducibility in the context of set theory — specifically, forcing and large cardinal hypotheses. Answering a question of Hamkins and Li <span><span>[6]</span></span>, we show that the Medvedev degrees of countable ordinals are far from linearly ordered in multiple ways, our main result here being that there is a club of ordinals which is an antichain with respect to Medvedev reducibility. We then generalize these results to arbitrary “reasonably-definable” reducibilities, under appropriate set-theoretic hypotheses.</div><div>We then turn from ordinals to general structures. We show that some of the results above yield characterizations of counterexamples to Vaught's conjecture; another applies to all situations, assigning an ordinal to any reasonable class of structures and “measure” on that class. We end by discussing some directions for future research.</div></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"176 2","pages":"Article 103522"},"PeriodicalIF":0.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016800722400126X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

We study Medvedev reducibility in the context of set theory — specifically, forcing and large cardinal hypotheses. Answering a question of Hamkins and Li [6], we show that the Medvedev degrees of countable ordinals are far from linearly ordered in multiple ways, our main result here being that there is a club of ordinals which is an antichain with respect to Medvedev reducibility. We then generalize these results to arbitrary “reasonably-definable” reducibilities, under appropriate set-theoretic hypotheses.
We then turn from ordinals to general structures. We show that some of the results above yield characterizations of counterexamples to Vaught's conjecture; another applies to all situations, assigning an ordinal to any reasonable class of structures and “measure” on that class. We end by discussing some directions for future research.
强还原性与集合论
我们在集合论的背景下研究梅德韦杰夫可还原性--特别是强迫假设和大贲门假设。为了回答哈姆金斯和李[6]提出的一个问题,我们证明了可数序数词的梅德韦杰夫度在多个方面远非线性有序,我们在此的主要结果是,存在一个序数词俱乐部,它是梅德韦杰夫可还原性的反链。然后,在适当的集合论假设下,我们将这些结果推广到任意 "可合理定义的 "还原性。我们表明,上述一些结果产生了沃特猜想反例的特征;另一个结果适用于所有情况,为任何合理的结构类别指定一个序数,并对该类别进行 "度量"。最后,我们讨论了未来研究的一些方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
78
审稿时长
200 days
期刊介绍: The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信