Yifan Zhang , Qiang Zhang , Ye Hu , Qing Wang , Liang Cheng , Yinglin Ke
{"title":"A surrogate modeling framework for aircraft assembly deformation using triplet attention-enhanced conditional autoencoder","authors":"Yifan Zhang , Qiang Zhang , Ye Hu , Qing Wang , Liang Cheng , Yinglin Ke","doi":"10.1016/j.jmsy.2024.10.009","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a framework for surrogating aircraft structural deformation using simulation data. The framework compresses high-dimensional field data into embeddings via Principal Component Analysis (PCA) and advanced deep learning methods. It establishes a mapping from discretized control points to these embeddings, enabling complete surrogation from the parameter space to structural deformation. The approach facilitates simultaneous surrogation of both displacement and stress fields, providing a robust evaluation metric for assessing assembly quality. Furthermore, the performance of the proposed PCA and deep learning-based surrogation methods is evaluated using multiple metrics. Results demonstrate that the proposed Conditional Convolutional Autoencoders, enhanced by Triplet attention (C2AE-Tri), achieve higher accuracy and over 60 % data reduction compared to the PCA baseline. This improvement highlights the framework's scalability and utility, particularly when data acquisition is challenging or costly.</div></div>","PeriodicalId":16227,"journal":{"name":"Journal of Manufacturing Systems","volume":"77 ","pages":"Pages 708-729"},"PeriodicalIF":12.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278612524002358","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a framework for surrogating aircraft structural deformation using simulation data. The framework compresses high-dimensional field data into embeddings via Principal Component Analysis (PCA) and advanced deep learning methods. It establishes a mapping from discretized control points to these embeddings, enabling complete surrogation from the parameter space to structural deformation. The approach facilitates simultaneous surrogation of both displacement and stress fields, providing a robust evaluation metric for assessing assembly quality. Furthermore, the performance of the proposed PCA and deep learning-based surrogation methods is evaluated using multiple metrics. Results demonstrate that the proposed Conditional Convolutional Autoencoders, enhanced by Triplet attention (C2AE-Tri), achieve higher accuracy and over 60 % data reduction compared to the PCA baseline. This improvement highlights the framework's scalability and utility, particularly when data acquisition is challenging or costly.
期刊介绍:
The Journal of Manufacturing Systems is dedicated to showcasing cutting-edge fundamental and applied research in manufacturing at the systems level. Encompassing products, equipment, people, information, control, and support functions, manufacturing systems play a pivotal role in the economical and competitive development, production, delivery, and total lifecycle of products, meeting market and societal needs.
With a commitment to publishing archival scholarly literature, the journal strives to advance the state of the art in manufacturing systems and foster innovation in crafting efficient, robust, and sustainable manufacturing systems. The focus extends from equipment-level considerations to the broader scope of the extended enterprise. The Journal welcomes research addressing challenges across various scales, including nano, micro, and macro-scale manufacturing, and spanning diverse sectors such as aerospace, automotive, energy, and medical device manufacturing.