Leveraging graph neural networks to predict Hammett’s constants for benzoic acid derivatives

Vaneet Saini , Ranjeet Kumar
{"title":"Leveraging graph neural networks to predict Hammett’s constants for benzoic acid derivatives","authors":"Vaneet Saini ,&nbsp;Ranjeet Kumar","doi":"10.1016/j.aichem.2024.100079","DOIUrl":null,"url":null,"abstract":"<div><div>The Hammett constants, σ<sub>m</sub> and σ<sub>p</sub>, reflect the electron-withdrawing and electron-donating abilities of substituents on aromatic compounds, and have been successfully used in various structure-activity relationship studies. However, determining these constants experimentally is both resource-intensive and time-consuming approach. In this study, we explore the use of graph neural networks (GNNs) to predict Hammett constant parameters using graph-based features. This innovative approach aims to provide rapid and efficient predictions of σ<sub>m</sub> and σ<sub>p</sub> values, eliminating the need for extensive computational and experimental setups. By leveraging the power of GNNs, we hope to streamline the process of obtaining these critical parameters, thereby facilitating more efficient reaction design and enhancing the applicability of linear free energy relationship studies in chemical research.</div></div>","PeriodicalId":72302,"journal":{"name":"Artificial intelligence chemistry","volume":"2 2","pages":"Article 100079"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294974772400037X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Hammett constants, σm and σp, reflect the electron-withdrawing and electron-donating abilities of substituents on aromatic compounds, and have been successfully used in various structure-activity relationship studies. However, determining these constants experimentally is both resource-intensive and time-consuming approach. In this study, we explore the use of graph neural networks (GNNs) to predict Hammett constant parameters using graph-based features. This innovative approach aims to provide rapid and efficient predictions of σm and σp values, eliminating the need for extensive computational and experimental setups. By leveraging the power of GNNs, we hope to streamline the process of obtaining these critical parameters, thereby facilitating more efficient reaction design and enhancing the applicability of linear free energy relationship studies in chemical research.
利用图神经网络预测苯甲酸衍生物的哈米特常数
哈米特常数 σm 和 σp 反映了芳香化合物中取代基的吸电子和放电子能力,已成功用于各种结构-活性关系研究。然而,通过实验确定这些常数既耗费资源又耗费时间。在本研究中,我们探索使用图神经网络 (GNN) 来预测基于图特征的哈米特常数参数。这种创新方法旨在快速高效地预测 σm 和 σp 值,无需大量计算和实验设置。通过利用 GNN 的强大功能,我们希望简化获取这些关键参数的过程,从而促进更高效的反应设计,并提高线性自由能关系研究在化学研究中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial intelligence chemistry
Artificial intelligence chemistry Chemistry (General)
自引率
0.00%
发文量
0
审稿时长
21 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信