Petrogenesis and tectonic setting of mafic magmatism within the Laguna Amarga Metamorphic Complex, Andes of Catamarca, Argentina: Insights into the opening of the Cuyania/Precordillera terrane from the Ouachita rift
{"title":"Petrogenesis and tectonic setting of mafic magmatism within the Laguna Amarga Metamorphic Complex, Andes of Catamarca, Argentina: Insights into the opening of the Cuyania/Precordillera terrane from the Ouachita rift","authors":"","doi":"10.1016/j.precamres.2024.107601","DOIUrl":null,"url":null,"abstract":"<div><div>Neoproterozoic crystalline basement rocks are exposed as fault-bounded blocks over the high Andes of Catamarca. The crystalline basement is stratigraphically grouped into the unique Laguna Amarga Metamorphic Complex and represents the northern extension of the Cuyania/Precordillera terrane. Tabular bodies of <em>meta</em>-mafic rocks are widespread in the basement interspersed within a thick sequence of <em>meta</em>-sedimentary rocks derived from siliciclastic, calc-silicate, and limestone protoliths. Overall, the geochemical characteristics of <em>meta</em>-mafic rocks are in the compositional range of Normal-Mid Ocean Ridge Basalt (Normal-MORB), reflecting a common depleted-mantle source with varying degrees of partial melting. While preserving the typical bulk chemistry of MORB magmatism, some mafic magma underwent differentiation at emplacement, leading to the development of high-Ti mafic rocks. New U-Pb zircon geochronology reveals three distinct age peaks, with two coinciding with ages identified in the metasedimentary host rocks. The dominant Mesoproterozoic age cluster is linked to inherited zircon crystals assimilated within a single <em>meta</em>-mafic rock. In contrast, zircon ages from the late Ordovician to early Devonian are attributed to metamorphic overgrowths. Notably, the third age cluster, delineates a Late Neoproterozoic magmatic event, indicating the temporal span of mafic magmatism. The finding agrees with the best available age (576 ± 17 Ma) for mafic magmatism on the Precordillera Mafic-Ultramafic Belt. Stratigraphic relationships and geochemical fingerprints enable correlation among the <em>meta</em>-mafic rocks from Laguna Amarga, tracing a belt of mafic magmatism with an oceanic affinity that extends southward. Building upon previous works, this study reaffirms that the rift-drift transition of the Cuyania/Precordillera terrane, linked to the Ouachita rift opening from southeastern Grenville, evolved during the latest Neoproterozoic.</div></div>","PeriodicalId":49674,"journal":{"name":"Precambrian Research","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precambrian Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301926824003140","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Neoproterozoic crystalline basement rocks are exposed as fault-bounded blocks over the high Andes of Catamarca. The crystalline basement is stratigraphically grouped into the unique Laguna Amarga Metamorphic Complex and represents the northern extension of the Cuyania/Precordillera terrane. Tabular bodies of meta-mafic rocks are widespread in the basement interspersed within a thick sequence of meta-sedimentary rocks derived from siliciclastic, calc-silicate, and limestone protoliths. Overall, the geochemical characteristics of meta-mafic rocks are in the compositional range of Normal-Mid Ocean Ridge Basalt (Normal-MORB), reflecting a common depleted-mantle source with varying degrees of partial melting. While preserving the typical bulk chemistry of MORB magmatism, some mafic magma underwent differentiation at emplacement, leading to the development of high-Ti mafic rocks. New U-Pb zircon geochronology reveals three distinct age peaks, with two coinciding with ages identified in the metasedimentary host rocks. The dominant Mesoproterozoic age cluster is linked to inherited zircon crystals assimilated within a single meta-mafic rock. In contrast, zircon ages from the late Ordovician to early Devonian are attributed to metamorphic overgrowths. Notably, the third age cluster, delineates a Late Neoproterozoic magmatic event, indicating the temporal span of mafic magmatism. The finding agrees with the best available age (576 ± 17 Ma) for mafic magmatism on the Precordillera Mafic-Ultramafic Belt. Stratigraphic relationships and geochemical fingerprints enable correlation among the meta-mafic rocks from Laguna Amarga, tracing a belt of mafic magmatism with an oceanic affinity that extends southward. Building upon previous works, this study reaffirms that the rift-drift transition of the Cuyania/Precordillera terrane, linked to the Ouachita rift opening from southeastern Grenville, evolved during the latest Neoproterozoic.
期刊介绍:
Precambrian Research publishes studies on all aspects of the early stages of the composition, structure and evolution of the Earth and its planetary neighbours. With a focus on process-oriented and comparative studies, it covers, but is not restricted to, subjects such as:
(1) Chemical, biological, biochemical and cosmochemical evolution; the origin of life; the evolution of the oceans and atmosphere; the early fossil record; palaeobiology;
(2) Geochronology and isotope and elemental geochemistry;
(3) Precambrian mineral deposits;
(4) Geophysical aspects of the early Earth and Precambrian terrains;
(5) Nature, formation and evolution of the Precambrian lithosphere and mantle including magmatic, depositional, metamorphic and tectonic processes.
In addition, the editors particularly welcome integrated process-oriented studies that involve a combination of the above fields and comparative studies that demonstrate the effect of Precambrian evolution on Phanerozoic earth system processes.
Regional and localised studies of Precambrian phenomena are considered appropriate only when the detail and quality allow illustration of a wider process, or when significant gaps in basic knowledge of a particular area can be filled.