Improving turbulence modeling for gas turbine blades: A novel approach to address flow transition and stagnation point anomalies

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ali Akbar Shahbazi , Vahid Esfahanian
{"title":"Improving turbulence modeling for gas turbine blades: A novel approach to address flow transition and stagnation point anomalies","authors":"Ali Akbar Shahbazi ,&nbsp;Vahid Esfahanian","doi":"10.1016/j.jcp.2024.113499","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate prediction of temperature and Heat Transfer Coefficient (HTC) distributions over gas turbine blades is crucial for the design process and life assessment of these components. Numerical studies of flow over gas turbine blades face significant challenges in accurately simulating two complex phenomena: (1) the transition of flow from laminar to turbulent, and (2) stagnation point flow at the leading edge. Many turbulence models tend to overpredict the temperature on turbine blades, leading to incorrect identification of hot-spot regions and, consequently, erroneous estimations of blade life. This paper investigates the performance of various turbulence models in simulating flow and heat transfer over gas turbine vanes. The study includes three full turbulence models, i.e., Spalart-Allmaras (SA), Shear Stress Transport <span><math><mi>k</mi><mo>−</mo><mi>ω</mi></math></span> (SST-kw), and <span><math><msup><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mi>f</mi></math></span> (V2F), as well as two transitional models, i.e., Transition SST (Trans-SST) and <span><math><mi>k</mi><mo>−</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>−</mo><mi>ω</mi></math></span> (k-kl-w). Simulation results indicate that the <span><math><msup><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mi>f</mi></math></span>, Trans-SST, and <span><math><mi>k</mi><mo>−</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>−</mo><mi>ω</mi></math></span> models can detect flow transition. However, the transition length and onset location predicted by the Trans-SST and <span><math><mi>k</mi><mo>−</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>−</mo><mi>ω</mi></math></span> models do not align with experimental data. Conversely, the <span><math><msup><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mi>f</mi></math></span> model suffers from over-predictions at the leading edge due to stagnation point anomaly. To address these issues and due to capacities of the V2F model, this study proposes two modifications to enhance the performance of the V2F model. First, the production term of turbulent kinetic energy is redefined to mitigate the stagnation point anomaly. Second, the model is recalibrated to improve the prediction of flow transition. The new model, named the Production Modified V2F (PMV2F) model, shows promising results in predicting temperature and heat transfer coefficients.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"520 ","pages":"Article 113499"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124007472","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate prediction of temperature and Heat Transfer Coefficient (HTC) distributions over gas turbine blades is crucial for the design process and life assessment of these components. Numerical studies of flow over gas turbine blades face significant challenges in accurately simulating two complex phenomena: (1) the transition of flow from laminar to turbulent, and (2) stagnation point flow at the leading edge. Many turbulence models tend to overpredict the temperature on turbine blades, leading to incorrect identification of hot-spot regions and, consequently, erroneous estimations of blade life. This paper investigates the performance of various turbulence models in simulating flow and heat transfer over gas turbine vanes. The study includes three full turbulence models, i.e., Spalart-Allmaras (SA), Shear Stress Transport kω (SST-kw), and v2f (V2F), as well as two transitional models, i.e., Transition SST (Trans-SST) and kkLω (k-kl-w). Simulation results indicate that the v2f, Trans-SST, and kkLω models can detect flow transition. However, the transition length and onset location predicted by the Trans-SST and kkLω models do not align with experimental data. Conversely, the v2f model suffers from over-predictions at the leading edge due to stagnation point anomaly. To address these issues and due to capacities of the V2F model, this study proposes two modifications to enhance the performance of the V2F model. First, the production term of turbulent kinetic energy is redefined to mitigate the stagnation point anomaly. Second, the model is recalibrated to improve the prediction of flow transition. The new model, named the Production Modified V2F (PMV2F) model, shows promising results in predicting temperature and heat transfer coefficients.
改进燃气轮机叶片的湍流建模:解决流动过渡和停滞点异常的新方法
准确预测燃气轮机叶片上的温度和传热系数(HTC)分布对于这些部件的设计过程和寿命评估至关重要。对燃气轮机叶片上流动的数值研究在准确模拟两种复杂现象方面面临重大挑战:(1) 气流从层流向湍流的过渡,以及 (2) 前缘的停滞点流动。许多湍流模型倾向于过高预测涡轮叶片上的温度,从而导致热点区域的错误识别,进而导致对叶片寿命的错误估计。本文研究了各种湍流模型在模拟燃气轮机叶片上的流动和传热方面的性能。研究包括三种完全湍流模型,即 Spalart-Allmaras (SA)、剪应力传输 k-ω (SST-kw) 和 v2-f (V2F),以及两种过渡模型,即 Transition SST (Trans-SST) 和 k-kL-ω (k-kl-w)。仿真结果表明,v2-f、Trans-SST 和 k-kL-ω 模型都能检测流量过渡。然而,Trans-SST 和 k-kL-ω 模型预测的过渡长度和起始位置与实验数据不一致。相反,由于停滞点异常,v2-f 模型对前缘的预测过高。针对这些问题以及 V2F 模型的能力,本研究提出了两项修改建议,以提高 V2F 模型的性能。首先,重新定义了湍流动能的产生项,以缓解停滞点异常。其次,对模型进行重新校准,以改进对流动转变的预测。新模型被命名为生产修正 V2F(PMV2F)模型,在预测温度和传热系数方面显示出良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信